Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 3, Pages 485–500
DOI: https://doi.org/10.4213/tmf413
(Mi tmf413)
 

This article is cited in 15 scientific papers (total in 15 papers)

Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models

V. V. Sokolova, A. V. Tsiganovb

a Landau Institute for Theoretical Physics, Centre for Non-linear Studies
b St. Petersburg State University, Faculty of Physics
References:
Abstract: We construct hierarchies of commutative Poisson subalgebras for Sklyanin brackets. Each of the subalgebras is generated by a complete set of integrals in involution. Some new integrable systems and schemes for separation of variables for them are elaborated using various well-known representations of the brackets. The constructed models include deformations for the Goryachev–Chaplygin top, the Toda chain, and the Heisenberg model.
Keywords: finite-dimensional integrable systems, Lax representation, rr-matrix algebras, separation of variables.
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 3, Pages 1730–1743
DOI: https://doi.org/10.1023/A:1021326727968
Bibliographic databases:
Language: Russian
Citation: V. V. Sokolov, A. V. Tsiganov, “Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models”, TMF, 133:3 (2002), 485–500; Theoret. and Math. Phys., 133:3 (2002), 1730–1743
Citation in format AMSBIB
\Bibitem{SokTsi02}
\by V.~V.~Sokolov, A.~V.~Tsiganov
\paper Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models
\jour TMF
\yr 2002
\vol 133
\issue 3
\pages 485--500
\mathnet{http://mi.mathnet.ru/tmf413}
\crossref{https://doi.org/10.4213/tmf413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001557}
\zmath{https://zbmath.org/?q=an:1067.37076}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 3
\pages 1730--1743
\crossref{https://doi.org/10.1023/A:1021326727968}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180450400013}
Linking options:
  • https://www.mathnet.ru/eng/tmf413
  • https://doi.org/10.4213/tmf413
  • https://www.mathnet.ru/eng/tmf/v133/i3/p485
  • This publication is cited in the following 15 articles:
    1. Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    2. Elmandouh A.A., “New Integrable Problems in a Rigid Body Dynamics With Cubic Integral in Velocities”, Results Phys., 8 (2018), 559–568  crossref  isi  scopus  scopus
    3. A. V. Tsiganov, “Bäcklund transformations for the Jacobi system on an ellipsoid”, Theoret. and Math. Phys., 192:3 (2017), 1350–1364  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Yehia H.M. Elmandouh A.A., “Integrable 2D Time-Irreversible Systems with a Cubic Second Integral”, Adv. Math. Phys., 2016, 8958747  crossref  mathscinet  zmath  isi  elib  scopus
    5. A. V. Tsyganov, “Razdelenie peremennykh dlya odnogo obobscheniya sistemy Chaplygina na sfere”, Nelineinaya dinam., 11:1 (2015), 179–185  mathnet  elib
    6. A. P. Sozonov, A. V. Tsiganov, “Bäcklund transformations relating different Hamilton–Jacobi equations”, Theoret. and Math. Phys., 183:3 (2015), 768–781  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. A.V. Tsiganov, “On the Chaplygin system on the sphere with velocity dependent potential”, Journal of Geometry and Physics, 92 (2015), 94  crossref
    8. Tsiganov, AV, “On maximally superintegrable systems”, Regular & Chaotic Dynamics, 13:3 (2008), 178  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Tsiganov, AV, “The Poisson bracket compatible with the classical reflection equation algebra”, Regular & Chaotic Dynamics, 13:3 (2008), 191  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    10. Kostko, AL, “On the bi-Hamiltonian structures for the Goryachev-Chaplygin top”, Regular & Chaotic Dynamics, 13:1 (2008), 38  mathnet  mathscinet  zmath  adsnasa  isi
    11. A. V. Tsiganov, “Darboux–Nijenhuis variables for open generalized Toda chains”, Theoret. and Math. Phys., 152:3 (2007), 1243–1257  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Sokolov, VV, “Integrable quadratic classical Hamiltonians on so(4) and so(3,1)”, Journal of Physics A-Mathematical and General, 39:8 (2006), 1915  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    13. A. V. Tsiganov, “Toda Chains in the Jacobi Method”, Theoret. and Math. Phys., 139:2 (2004), 636–653  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Borisov AV, Mamaev IS, “Necessary and sufficient conditions for the polynomial integrability of generalized Toda chains”, Doklady Mathematics, 69:1 (2004), 131–135  mathscinet  zmath  isi
    15. A. V. Tsiganov, “Separation of Variables in the Kovalevskaya–Goryachev–Chaplygin Gyrostat”, Theoret. and Math. Phys., 135:2 (2003), 651–658  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:570
    Full-text PDF :270
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025