Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 3, Pages 367–385
DOI: https://doi.org/10.4213/tmf404
(Mi tmf404)
 

This article is cited in 7 scientific papers (total in 7 papers)

Calogero–FranÇoise Flows and Periodic Peakons

R. Bealsa, D. H. Sattingerb, J. Szmigielskic

a Yale University
b Utah State University
c University of Saskatchewan
Full-text PDF (280 kB) Citations (7)
References:
Abstract: The completely integrable Hamiltonian systems discovered by Calogero and FranÇoise contain the finite-dimensional reductions of the Camassa–Holm and Hunter–Saxton equations. We show that the associated spectral problem has the same form as that of the periodic discrete Camassa–Holm equation. The flow is linearized by the Abel map on a hyperelliptic curve. For two-particle systems, which correspond to genus-1 curves, explicit solutions are obtained in terms of the Weierstrass elliptic functions.
Keywords: finite-dimensional Hamiltonians, elliptic and hyperelliptic curves, Abel maps.
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 3, Pages 1631–1646
DOI: https://doi.org/10.1023/A:1021358107495
Bibliographic databases:
Language: Russian
Citation: R. Beals, D. H. Sattinger, J. Szmigielski, “Calogero–FranÇoise Flows and Periodic Peakons”, TMF, 133:3 (2002), 367–385; Theoret. and Math. Phys., 133:3 (2002), 1631–1646
Citation in format AMSBIB
\Bibitem{BeaSatSzm02}
\by R.~Beals, D.~H.~Sattinger, J.~Szmigielski
\paper Calogero--Fran\c{C}oise Flows and Periodic Peakons
\jour TMF
\yr 2002
\vol 133
\issue 3
\pages 367--385
\mathnet{http://mi.mathnet.ru/tmf404}
\crossref{https://doi.org/10.4213/tmf404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001548}
\zmath{https://zbmath.org/?q=an:1067.37071}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 3
\pages 1631--1646
\crossref{https://doi.org/10.1023/A:1021358107495}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180450400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf404
  • https://doi.org/10.4213/tmf404
  • https://www.mathnet.ru/eng/tmf/v133/i3/p367
  • This publication is cited in the following 7 articles:
    1. Zhi Zhang, Xun Wang, “Sharp estimates of lowest positive Neumann eigenvalue for general indefinite Sturm-Liouville problems”, Journal of Differential Equations, 382 (2024), 302  crossref
    2. Jifeng Chu, Gang Meng, Zhi Zhang, “Minimizations of positive periodic and Dirichlet eigenvalues for general indefinite Sturm-Liouville problems”, Advances in Mathematics, 432 (2023), 109272  crossref
    3. Hans Lundmark, Jacek Szmigielski, “A view of the peakon world through the lens of approximation theory”, Physica D: Nonlinear Phenomena, 440 (2022), 133446  crossref
    4. Eckhardt J., Kostenko A., “The Inverse Spectral Problem For Periodic Conservative Multi-Peakon Solutions of the Camassa-Holm Equation”, Int. Math. Res. Notices, 2020:16 (2020), 5126–5151  crossref  mathscinet  isi
    5. Eckhardt J., Kostenko A., Nicolussi N., “Trace Formulas and Continuous Dependence of Spectra For the Periodic Conservative Camassa-Holm Flow”, J. Differ. Equ., 268:6 (2020), 3016–3034  crossref  mathscinet  isi  scopus
    6. Avan, J, “On Calogero-Franccediloise-type Lax matrices and their dynamical r-matrices”, Journal of Mathematical Physics, 50:7 (2009), 072701  crossref  mathscinet  adsnasa  isi  scopus  scopus
    7. Beals, R, “Periodic peakons and Calogero-Francoise flows”, Journal of the Institute of Mathematics of Jussieu, 4:1 (2005), 1  crossref  mathscinet  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :232
    References:54
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025