Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1975, Volume 24, Number 3, Pages 425–429 (Mi tmf4028)  

This article is cited in 38 scientific papers (total in 38 papers)

Quantization of the (sinφ)2 interaction in terms of fermion variables

A. K. Pogrebkov, V. N. Sushko
References:
Abstract: Quantization of the (sinφ)2-interaction is performed. It is shown that for the accepted quantization procedure, the Hamiltonian of the (sinφ)2-interaction is equivalent to the Hamiltonian of a fermion field which reduces at definite conditions to the Hamiltonian of the massive Thirring model.
Received: 15.05.1975
English version:
Theoretical and Mathematical Physics, 1975, Volume 24, Issue 3, Pages 935–937
DOI: https://doi.org/10.1007/BF01029883
Document Type: Article
Language: Russian
Citation: A. K. Pogrebkov, V. N. Sushko, “Quantization of the (sinφ)2 interaction in terms of fermion variables”, TMF, 24:3 (1975), 425–429; Theoret. and Math. Phys., 24:3 (1975), 935–937
Citation in format AMSBIB
\Bibitem{PogSus75}
\by A.~K.~Pogrebkov, V.~N.~Sushko
\paper Quantization of the $(\sin\varphi)_2$ interaction in terms of fermion variables
\jour TMF
\yr 1975
\vol 24
\issue 3
\pages 425--429
\mathnet{http://mi.mathnet.ru/tmf4028}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 24
\issue 3
\pages 935--937
\crossref{https://doi.org/10.1007/BF01029883}
Linking options:
  • https://www.mathnet.ru/eng/tmf4028
  • https://www.mathnet.ru/eng/tmf/v24/i3/p425
  • This publication is cited in the following 38 articles:
    1. E. N. Antonov, A. Yu. Orlov, “Sigma model instantons and singular tau function”, Open Communications in Nonlinear Mathematical Physics, Volume 4 (2024)  crossref
    2. A. Yu. Orlov, “Integrals of tau functions: A round dance tau function and multimatrix integrals”, Theoret. and Math. Phys., 215:3 (2023), 784–792  mathnet  crossref  crossref  mathscinet  adsnasa
    3. A. Yu. Orlov, “Notes about the KP/BKP correspondence”, Theoret. and Math. Phys., 208:3 (2021), 1207–1227  mathnet  crossref  crossref  adsnasa  isi  elib
    4. A. D. Mironov, A. Morozov, S. M. Natanzon, A. Yu. Orlov, “Around spin Hurwitz numbers”, Lett Math Phys, 111:5 (2021)  crossref
    5. Sergey Natanzon, Aleksandr Orlov, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 337  crossref
    6. S. M. Natanzon, A. Yu. Orlov, “Hurwitz numbers from Feynman diagrams”, Theoret. and Math. Phys., 204:3 (2020), 1166–1194  mathnet  crossref  crossref  adsnasa  isi  elib
    7. I. Kukuljan, S. Sotiriadis, G. Takács, “Out-of-horizon correlations following a quench in a relativistic quantum field theory”, J. High Energ. Phys., 2020:7 (2020)  crossref
    8. Rafael I. Nepomechie, “Wronskian-type formula for inhomogeneous TQ equations”, Theoret. and Math. Phys., 204:3 (2020), 1195–1200  mathnet  mathnet  crossref  crossref  isi  scopus
    9. van de Leur J.W. Orlov A.Yu., “Character Expansion of Matrix Integrals”, J. Phys. A-Math. Theor., 51:2 (2018), 025208  crossref  isi
    10. K. A. Matveev, M. Pustilnik, “Viscous Dissipation in One-Dimensional Quantum Liquids”, Phys. Rev. Lett., 119:3 (2017)  crossref
    11. Petrov E.Yu. Kudrin A.V., “Plasmons in QED vacuum”, Phys. Rev. A, 94:3 (2016), 032107  crossref  isi  scopus
    12. K. A. Matveev, M. Pustilnik, “Effective mass of elementary excitations in Galilean-invariant integrable models”, Phys. Rev. B, 94:11 (2016)  crossref
    13. Pustilnik M., Matveev K.A., “Fate of Classical Solitons in One-Dimensional Quantum Systems”, Phys. Rev. B, 92:19 (2015), 195146  crossref  isi
    14. A.Yu. Orlov, “Deformed Ginibre ensembles and integrable systems”, Physics Letters A, 378:4 (2014), 319  crossref
    15. A.K. Pogrebkov, NATO Science Series, 201, Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 2006, 231  crossref
    16. A. K. Pogrebkov, “Boson-fermion correspondence and quantum integrable and dispersionless models”, Russian Math. Surveys, 58:5 (2003), 1003–1037  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    17. A. K. Pogrebkov, “Quantizing the KdV Equation”, Theoret. and Math. Phys., 129:2 (2001), 1586–1595  mathnet  crossref  crossref  mathscinet  zmath  isi
    18. A. K. Pogrebkov, M. C. Prati, “On bosonization of free massless fermions”, Nuov Cim A, 109:1 (1996), 9  crossref
    19. A. K. Pogrebkov, M. C. Prati, “On bosonization of free massless fermions”, Nuov Cim A, 107:8 (1994), 1315  crossref
    20. V. A. Matveev, V. A. Rubakov, A. N. Tavkhelidze, V. F. Tokarev, “Nonconservation of the fermion number and the limiting density of fermionic matter (two-dimensional gauge model)”, Theoret. and Math. Phys., 68:1 (1986), 635–645  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :151
    References:68
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025