Abstract:
Quantization of the (sinφ)2-interaction is performed. It is shown that for the accepted
quantization procedure, the Hamiltonian of the (sinφ)2-interaction is equivalent
to the Hamiltonian of a fermion field which reduces at definite conditions to the Hamiltonian
of the massive Thirring model.
Citation:
A. K. Pogrebkov, V. N. Sushko, “Quantization of the (sinφ)2 interaction in terms of fermion variables”, TMF, 24:3 (1975), 425–429; Theoret. and Math. Phys., 24:3 (1975), 935–937
\Bibitem{PogSus75}
\by A.~K.~Pogrebkov, V.~N.~Sushko
\paper Quantization of the $(\sin\varphi)_2$ interaction in terms of fermion variables
\jour TMF
\yr 1975
\vol 24
\issue 3
\pages 425--429
\mathnet{http://mi.mathnet.ru/tmf4028}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 24
\issue 3
\pages 935--937
\crossref{https://doi.org/10.1007/BF01029883}
Linking options:
https://www.mathnet.ru/eng/tmf4028
https://www.mathnet.ru/eng/tmf/v24/i3/p425
This publication is cited in the following 38 articles:
E. N. Antonov, A. Yu. Orlov, “Sigma model instantons and singular tau function”, Open Communications in Nonlinear Mathematical Physics, Volume 4 (2024)
A. Yu. Orlov, “Integrals of tau functions: A round dance tau function and multimatrix integrals”, Theoret. and Math. Phys., 215:3 (2023), 784–792
A. Yu. Orlov, “Notes about the KP/BKP correspondence”, Theoret. and Math. Phys., 208:3 (2021), 1207–1227
A. D. Mironov, A. Morozov, S. M. Natanzon, A. Yu. Orlov, “Around spin Hurwitz numbers”, Lett Math Phys, 111:5 (2021)
Sergey Natanzon, Aleksandr Orlov, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 337
S. M. Natanzon, A. Yu. Orlov, “Hurwitz numbers from Feynman diagrams”, Theoret. and Math. Phys., 204:3 (2020), 1166–1194
I. Kukuljan, S. Sotiriadis, G. Takács, “Out-of-horizon correlations following a quench in a relativistic quantum field theory”, J. High Energ. Phys., 2020:7 (2020)
Rafael I. Nepomechie, “Wronskian-type formula for inhomogeneous TQ equations”, Theoret. and Math. Phys., 204:3 (2020), 1195–1200
van de Leur J.W. Orlov A.Yu., “Character Expansion of Matrix Integrals”, J. Phys. A-Math. Theor., 51:2 (2018), 025208
K. A. Matveev, M. Pustilnik, “Viscous Dissipation in One-Dimensional Quantum Liquids”, Phys. Rev. Lett., 119:3 (2017)
Petrov E.Yu. Kudrin A.V., “Plasmons in QED vacuum”, Phys. Rev. A, 94:3 (2016), 032107
K. A. Matveev, M. Pustilnik, “Effective mass of elementary excitations in Galilean-invariant integrable models”, Phys. Rev. B, 94:11 (2016)
Pustilnik M., Matveev K.A., “Fate of Classical Solitons in One-Dimensional Quantum Systems”, Phys. Rev. B, 92:19 (2015), 195146
A.Yu. Orlov, “Deformed Ginibre ensembles and integrable systems”, Physics Letters A, 378:4 (2014), 319
A.K. Pogrebkov, NATO Science Series, 201, Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 2006, 231
A. K. Pogrebkov, “Boson-fermion correspondence and quantum integrable and dispersionless models”, Russian Math. Surveys, 58:5 (2003), 1003–1037
A. K. Pogrebkov, “Quantizing the KdV Equation”, Theoret. and Math. Phys., 129:2 (2001), 1586–1595
A. K. Pogrebkov, M. C. Prati, “On bosonization of free massless fermions”, Nuov Cim A, 109:1 (1996), 9
A. K. Pogrebkov, M. C. Prati, “On bosonization of free massless fermions”, Nuov Cim A, 107:8 (1994), 1315
V. A. Matveev, V. A. Rubakov, A. N. Tavkhelidze, V. F. Tokarev, “Nonconservation of the fermion number and the limiting density of fermionic matter (two-dimensional gauge model)”, Theoret. and Math. Phys., 68:1 (1986), 635–645