Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 139, Number 1, Pages 29–44
DOI: https://doi.org/10.4213/tmf40
(Mi tmf40)
 

This article is cited in 9 scientific papers (total in 9 papers)

BRST Operator for Quantum Lie Algebras: Relation to the Bar Complex

V. G. Gorbunova, A. P. Isaevb, O. V. Ogievetskiicd

a University of Kentucky
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
c P. N. Lebedev Physical Institute, Russian Academy of Sciences
d CNRS – Center of Theoretical Physics
Full-text PDF (298 kB) Citations (9)
References:
Abstract: Quantum Lie algebras (an important class of quadratic algebras arising in the Woronowicz calculus on quantum groups) are generalizations of Lie (super)algebras. Many notions from the theory of Lie (super)algebras admit quantum generalizations. In particular, there is a BRST operator $Q$ ($Q^2=0$) that generates the differential in the Woronowicz theory and gives information about (co)homologies of quantum Lie algebras. In our previous papers, we gave and solved a recursive relation for the operator $Q$ for quantum Lie algebras. Here, we consider the bar complex for $q$-Lie algebras and its subcomplex of $q$-antisymmetric chains. We establish a chain map (which is an isomorphism) of the standard complex for a $q$-Lie algebra to the subcomplex of the antisymmetric chains. The construction requires a set of nontrivial identities in the group algebra of the braid group. We also discuss a generalization of the standard complex to the case where a $q$-Lie algebra is equipped with a grading operator.
Keywords: BRST operator, quadratic algebras, quantum Lie algebras, bar complex.
English version:
Theoretical and Mathematical Physics, 2004, Volume 139, Issue 1, Pages 473–485
DOI: https://doi.org/10.1023/B:TAMP.0000022740.21580.d4
Bibliographic databases:
Language: Russian
Citation: V. G. Gorbunov, A. P. Isaev, O. V. Ogievetskii, “BRST Operator for Quantum Lie Algebras: Relation to the Bar Complex”, TMF, 139:1 (2004), 29–44; Theoret. and Math. Phys., 139:1 (2004), 473–485
Citation in format AMSBIB
\Bibitem{GorIsaOgi04}
\by V.~G.~Gorbunov, A.~P.~Isaev, O.~V.~Ogievetskii
\paper BRST Operator for Quantum Lie Algebras: Relation to the Bar Complex
\jour TMF
\yr 2004
\vol 139
\issue 1
\pages 29--44
\mathnet{http://mi.mathnet.ru/tmf40}
\crossref{https://doi.org/10.4213/tmf40}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2076907}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...139..473G}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 139
\issue 1
\pages 473--485
\crossref{https://doi.org/10.1023/B:TAMP.0000022740.21580.d4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221534000003}
Linking options:
  • https://www.mathnet.ru/eng/tmf40
  • https://doi.org/10.4213/tmf40
  • https://www.mathnet.ru/eng/tmf/v139/i1/p29
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :246
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024