Abstract:
The derivation of a Glauber type representation is given for the scattering amplitude of particles of spin 1/2 on smooth potentials when the impinging particles have high energies. The discussion proceeds within the framework of the two-component description, and on the basis of the Dirac equation.
Citation:
S. P. Kuleshov, V. A. Matveev, A. N. Sisakyan, “Glauber type representation for the scattering amplitude of high-energy Dirac particles on smooth potentials”, TMF, 2:1 (1970), 73–79; Theoret. and Math. Phys., 2:1 (1970), 55–59
\Bibitem{KulMatSis70}
\by S.~P.~Kuleshov, V.~A.~Matveev, A.~N.~Sisakyan
\paper Glauber type representation for the scattering amplitude of high-energy Dirac particles on smooth potentials
\jour TMF
\yr 1970
\vol 2
\issue 1
\pages 73--79
\mathnet{http://mi.mathnet.ru/tmf3990}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 2
\issue 1
\pages 55--59
\crossref{https://doi.org/10.1007/BF01028856}
Linking options:
https://www.mathnet.ru/eng/tmf3990
https://www.mathnet.ru/eng/tmf/v2/i1/p73
This publication is cited in the following 6 articles:
G. F. Glinskii, “Nonlinear electrodynamics and anisotropic space-time”, Soviet Physics Journal, 23:4 (1980), 318
G. F. Glinskii, “The question of the metric in the nonlinear theory of a scalar field”, Soviet Physics Journal, 21:6 (1978), 734
V. R. Garsevanishvili, S. V. Goloskokov, V. A. Matveev, L. A. Slepchenko, “Investigation of spin effects at high energy in the quasipotential approach”, Theoret. and Math. Phys., 11:1 (1972), 327–332
Nguyen Van Hieu, “Essen tially nonlinear scalar fields and the geometry of space-time”, Theoret. and Math. Phys., 11:3 (1972), 519–524
V. R. Garsevanishvili, S. V. Goloskokov, V. A. Matveev, L. A. Slepchenko, A. N. Tavkhelidze, “Allowance for corrections to the eikonal approximation in the quasipotential approach”, Theoret. and Math. Phys., 6:1 (1971), 24–28
V. N. Pervushin, “Eikonal representation for the amplitudes of scattering of Dirac particles by an arbitrary potential”, Theoret. and Math. Phys., 9:2 (1971), 1127–1133