Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 1, Pages 54–68
DOI: https://doi.org/10.4213/tmf380
(Mi tmf380)
 

This article is cited in 7 scientific papers (total in 7 papers)

Toward an Infinite-Component Field Theory with a Double Symmetry: Interaction of Fields

L. M. Slad

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Full-text PDF (256 kB) Citations (7)
References:
Abstract: We complete the first stage of constructing a theory of fields not investigated before; these fields transform according to Lorentz group representations decomposable into an infinite direct sum of finite-dimensional irreducible representations. We consider only those theories that initially have a double symmetry: relativistic invariance and the invariance under the transformations of a secondary symmetry generated by the polar or the axial four-vector representation of the orthochronous Lorentz group. The high symmetry of the theory results in an infinite degeneracy of the particle mass spectrum with respect to spin. To eliminate this degeneracy, we postulate a spontaneous secondary-symmetry breaking and then solve the problems on the existence and the structure of nontrivial interaction Lagrangians.
Keywords: double symmetries, relativistically invariant Lagrangians, infinite-component fields.
Received: 17.12.2001
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 1, Pages 1363–1375
DOI: https://doi.org/10.1023/A:1020693930170
Bibliographic databases:
Language: Russian
Citation: L. M. Slad, “Toward an Infinite-Component Field Theory with a Double Symmetry: Interaction of Fields”, TMF, 133:1 (2002), 54–68; Theoret. and Math. Phys., 133:1 (2002), 1363–1375
Citation in format AMSBIB
\Bibitem{Sla02}
\by L.~M.~Slad
\paper Toward an Infinite-Component Field Theory with a Double Symmetry: Interaction of Fields
\jour TMF
\yr 2002
\vol 133
\issue 1
\pages 54--68
\mathnet{http://mi.mathnet.ru/tmf380}
\crossref{https://doi.org/10.4213/tmf380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992169}
\zmath{https://zbmath.org/?q=an:1068.81045}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 1
\pages 1363--1375
\crossref{https://doi.org/10.1023/A:1020693930170}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179367800004}
Linking options:
  • https://www.mathnet.ru/eng/tmf380
  • https://doi.org/10.4213/tmf380
  • https://www.mathnet.ru/eng/tmf/v133/i1/p54
  • This publication is cited in the following 7 articles:
    1. Slad L.M., “Some Field-Theoretical Aspects of Two Types of the Poincaré Group Representations”, Int. J. Mod. Phys. A, 29:2 (2014), 1450020  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. L. M. Slad, “Electromagnetic properties of non-Dirac particles with rest spin $1/2$”, Theoret. and Math. Phys., 165:1 (2010), 1275–1292  mathnet  crossref  crossref  adsnasa  isi
    3. L. M. Slad, “Electromagnetic form factors and polarizations of non-Dirac particles with rest spin 1/2”, Theoret. and Math. Phys., 158:1 (2009), 112–124  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Leonid M. Slad, “Electroweak Interaction Model with an Undegenerate Double Symmetry”, SIGMA, 2 (2006), 045, 8 pp.  mathnet  crossref  mathscinet  zmath
    5. L. M. Slad, “Mass spectra in the doubly symmetric theory of infinite-component fields”, Theoret. and Math. Phys., 142:1 (2005), 15–28  mathnet  crossref  crossref  adsnasa  isi  elib
    6. E. A. Ivanov, B. M. Zupnik, “Nonanticommutative deformations of N=(1, 1) supersymmetric theories”, Theor Math Phys, 142:2 (2005), 197  crossref
    7. E. A. Ivanov, B. M. Zupnik, “Nonanticommutative deformations of $N=(1,1)$ supersymmetric theories”, Theoret. and Math. Phys., 142:2 (2005), 197–210  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:479
    Full-text PDF :215
    References:87
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025