Abstract:
We complete the first stage of constructing a theory of fields not investigated before; these fields transform according to Lorentz group representations decomposable into an infinite direct sum of finite-dimensional irreducible representations. We consider only those theories that initially have a double symmetry: relativistic invariance and the invariance under the transformations of a secondary symmetry generated by the polar or the axial four-vector representation of the orthochronous Lorentz group. The high symmetry of the theory results in an infinite degeneracy of the particle mass spectrum with respect to spin. To eliminate this degeneracy, we postulate a spontaneous secondary-symmetry breaking and then solve the problems on the existence and the structure of nontrivial interaction Lagrangians.
Citation:
L. M. Slad, “Toward an Infinite-Component Field Theory with a Double Symmetry: Interaction of Fields”, TMF, 133:1 (2002), 54–68; Theoret. and Math. Phys., 133:1 (2002), 1363–1375
\Bibitem{Sla02}
\by L.~M.~Slad
\paper Toward an Infinite-Component Field Theory with a Double Symmetry: Interaction of Fields
\jour TMF
\yr 2002
\vol 133
\issue 1
\pages 54--68
\mathnet{http://mi.mathnet.ru/tmf380}
\crossref{https://doi.org/10.4213/tmf380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992169}
\zmath{https://zbmath.org/?q=an:1068.81045}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 1
\pages 1363--1375
\crossref{https://doi.org/10.1023/A:1020693930170}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179367800004}
Linking options:
https://www.mathnet.ru/eng/tmf380
https://doi.org/10.4213/tmf380
https://www.mathnet.ru/eng/tmf/v133/i1/p54
This publication is cited in the following 7 articles:
Slad L.M., “Some Field-Theoretical Aspects of Two Types of the Poincaré Group Representations”, Int. J. Mod. Phys. A, 29:2 (2014), 1450020
L. M. Slad, “Electromagnetic properties of non-Dirac particles with rest spin $1/2$”, Theoret. and Math. Phys., 165:1 (2010), 1275–1292
L. M. Slad, “Electromagnetic form factors and polarizations of non-Dirac particles with rest spin 1/2”, Theoret. and Math. Phys., 158:1 (2009), 112–124
Leonid M. Slad, “Electroweak Interaction Model with an Undegenerate Double Symmetry”, SIGMA, 2 (2006), 045, 8 pp.
L. M. Slad, “Mass spectra in the doubly symmetric theory of infinite-component fields”, Theoret. and Math. Phys., 142:1 (2005), 15–28
E. A. Ivanov, B. M. Zupnik, “Nonanticommutative deformations of N=(1, 1) supersymmetric theories”, Theor Math Phys, 142:2 (2005), 197
E. A. Ivanov, B. M. Zupnik, “Nonanticommutative deformations of $N=(1,1)$ supersymmetric theories”, Theoret. and Math. Phys., 142:2 (2005), 197–210