Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 1, Pages 24–35
DOI: https://doi.org/10.4213/tmf378
(Mi tmf378)
 

This article is cited in 10 scientific papers (total in 10 papers)

Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves $2\leftrightarrow 4$

I. G. Korepanov

South Ural State University
References:
Abstract: We present sequences of linear maps of vector spaces with fixed bases. Each term of a sequence is a linear space of differentials of metric values ascribed to the elements of a simplicial complex determining a triangulation of a manifold. If a sequence is an acyclic complex, then we can construct a manifold invariant using its torsion. We demonstrate this first for three-dimensional manifolds and then construct the part of this program for four-dimensional manifolds pertaining to moves $2\leftrightarrow 4$.
Keywords: piecewise-linear manifolds, manifold invariants Pachner moves, differential identities for Euclidean simplices, acyclic complexes.
Received: 04.02.2002
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 1, Pages 1338–1347
DOI: https://doi.org/10.1023/A:1020689829261
Bibliographic databases:
Language: Russian
Citation: I. G. Korepanov, “Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves $2\leftrightarrow 4$”, TMF, 133:1 (2002), 24–35; Theoret. and Math. Phys., 133:1 (2002), 1338–1347
Citation in format AMSBIB
\Bibitem{Kor02}
\by I.~G.~Korepanov
\paper Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves $2\leftrightarrow 4$
\jour TMF
\yr 2002
\vol 133
\issue 1
\pages 24--35
\mathnet{http://mi.mathnet.ru/tmf378}
\crossref{https://doi.org/10.4213/tmf378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992167}
\zmath{https://zbmath.org/?q=an:1083.57020}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 1
\pages 1338--1347
\crossref{https://doi.org/10.1023/A:1020689829261}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179367800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf378
  • https://doi.org/10.4213/tmf378
  • https://www.mathnet.ru/eng/tmf/v133/i1/p24
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:352
    Full-text PDF :182
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024