Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 133, Number 1, Pages 3–23
DOI: https://doi.org/10.4213/tmf377
(Mi tmf377)
 

This article is cited in 26 scientific papers (total in 26 papers)

Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves

A. V. Odesskiiab, V. N. Rubtsovcb

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Université d'Angers
c Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: We study polynomial Poisson algebras with some regularity conditions. Linear (Lie–Berezin–Kirillov) structures on dual spaces of semisimple Lie algebras, quadratic Sklyanin elliptic algebras, and the polynomial algebras recently described by Bondal, Dubrovin, and Ugaglia belong to this class. We establish some simple determinant relations between the brackets and Casimir functions of these algebras. In particular, these relations imply that the sum of degrees of the Casimir functions coincides with the dimension of the algebra in the Sklyanin elliptic algebras. We present some interesting examples of these algebras and show that some of them arise naturally in the Hamiltonian integrable systems. A new class of two-body integrable systems admitting an elliptic dependence on both coordinates and momenta is among these examples.
Keywords: polynomial Poisson structures, elliptic algebras, integrable systems.
Received: 14.12.2001
English version:
Theoretical and Mathematical Physics, 2002, Volume 133, Issue 1, Pages 1321–1337
DOI: https://doi.org/10.1023/A:1020673412423
Bibliographic databases:
Language: Russian
Citation: A. V. Odesskii, V. N. Rubtsov, “Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves”, TMF, 133:1 (2002), 3–23; Theoret. and Math. Phys., 133:1 (2002), 1321–1337
Citation in format AMSBIB
\Bibitem{OdeRub02}
\by A.~V.~Odesskii, V.~N.~Rubtsov
\paper Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves
\jour TMF
\yr 2002
\vol 133
\issue 1
\pages 3--23
\mathnet{http://mi.mathnet.ru/tmf377}
\crossref{https://doi.org/10.4213/tmf377}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992166}
\zmath{https://zbmath.org/?q=an:1138.53314}
\elib{https://elibrary.ru/item.asp?id=13397128}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 133
\issue 1
\pages 1321--1337
\crossref{https://doi.org/10.1023/A:1020673412423}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179367800001}
Linking options:
  • https://www.mathnet.ru/eng/tmf377
  • https://doi.org/10.4213/tmf377
  • https://www.mathnet.ru/eng/tmf/v133/i1/p3
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:598
    Full-text PDF :284
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024