Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1973, Volume 16, Number 3, Pages 281–290 (Mi tmf3762)  

This article is cited in 5 scientific papers (total in 5 papers)

Convergence of the perturbation series for a nonlocal nonpolynomial theory m2/Λ

A. G. Basuev
Full-text PDF (969 kB) Citations (5)
References:
Abstract: In [2,3] the perturbation series in the translationally invariant case is shown to converge on the basis of correspondence with statistical theory. In the present paper, a direct estimate is made for the logarithm of the generating functional of the Euclidean s matrix and an upper bound for the radius of convergence with respect to the coupling constant is obtained; this is proportional to m2/Λ, where m is the mass of the particle and Λ is the small coupling constant.
Received: 11.07.1972
English version:
Theoretical and Mathematical Physics, 1973, Volume 16, Issue 3, Pages 835–842
DOI: https://doi.org/10.1007/BF01042421
Bibliographic databases:
Language: Russian
Citation: A. G. Basuev, “Convergence of the perturbation series for a nonlocal nonpolynomial theory m2/Λ”, TMF, 16:3 (1973), 281–290; Theoret. and Math. Phys., 16:3 (1973), 835–842
Citation in format AMSBIB
\Bibitem{Bas73}
\by A.~G.~Basuev
\paper Convergence of the perturbation series for a nonlocal nonpolynomial theory
$m^2/\Lambda$
\jour TMF
\yr 1973
\vol 16
\issue 3
\pages 281--290
\mathnet{http://mi.mathnet.ru/tmf3762}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468865}
\transl
\jour Theoret. and Math. Phys.
\yr 1973
\vol 16
\issue 3
\pages 835--842
\crossref{https://doi.org/10.1007/BF01042421}
Linking options:
  • https://www.mathnet.ru/eng/tmf3762
  • https://www.mathnet.ru/eng/tmf/v16/i3/p281
  • This publication is cited in the following 5 articles:
    1. Nikita A. Ignatyuk, Stanislav L. Ogarkov, Daniel V. Skliannyi, “Nonlocal Fractional Quantum Field Theory and Converging Perturbation Series”, Symmetry, 15:10 (2023), 1823  crossref
    2. Guskov V.A. Ivanov M.G. Ogarkov S.L., “A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory”, Phys. Part. Nuclei, 52:3 (2021), 420–437  crossref  isi
    3. Matthew Bernard, Vladislav A. Guskov, Mikhail G. Ivanov, Alexey E. Kalugin, Stanislav L. Ogarkov, “Nonlocal Scalar Quantum Field Theory—Functional Integration, Basis Functions Representation and Strong Coupling Expansion”, Particles, 2:3 (2019), 385  crossref
    4. Ivan Chebotarev, Vladislav Guskov, Stanislav Ogarkov, Matthew Bernard, “S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation”, Particles, 2:1 (2019), 103  crossref
    5. A. G. Basuev, “Convergence of the perturbation series for the Yukawa interaction”, Theoret. and Math. Phys., 22:2 (1975), 142–148  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :116
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025