Abstract:
It is proved that the phase space of a finite Toda chain can be obtained by means of the reduction of the phase space of a geodesic flow on the uniform space of symmetric positive-definite matrices. The reduction is performed with the aid of the group of triangular matrices and makes it possible to obtain explicit formulas for solutions of the equations of motion. The construction is extended to the generalised Toda chains corresponding to an arbitrary system of roots.
Citation:
M. A. Olshanetsky, A. M. Perelomov, “The Toda chain as a reduced system”, TMF, 45:1 (1980), 3–18; Theoret. and Math. Phys., 45:1 (1980), 843–854
\Bibitem{OlsPer80}
\by M.~A.~Olshanetsky, A.~M.~Perelomov
\paper The Toda chain as~a~reduced system
\jour TMF
\yr 1980
\vol 45
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/tmf3761}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=595460}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 45
\issue 1
\pages 843--854
\crossref{https://doi.org/10.1007/BF01047139}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LZ04500001}
Linking options:
https://www.mathnet.ru/eng/tmf3761
https://www.mathnet.ru/eng/tmf/v45/i1/p3
This publication is cited in the following 15 articles:
Anatoly Dymarsky, Alexander Gorsky, “Quantum chaos as delocalization in Krylov space”, Phys. Rev. B, 102:8 (2020)
A. V. Marshakov, A. D. Mironov, A. Yu. Morozov, “Combinatorial expansions of conformal blocks”, Theoret. and Math. Phys., 164:1 (2010), 831–852
V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 175
V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 211
V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 315
Luiz A. Ferreira, Erica E. Leite, “Integrable theories in any dimension and homogenous spaces”, Nuclear Physics B, 547:3 (1999), 471
A. D. Mironov, “Group theory approach to the τ-function and its quantization”, Theoret. and Math. Phys., 114:2 (1998), 127–183
László Fehér, Izumi Tsutsui, “Regularization of Toda lattices by Hamiltonian reduction”, Journal of Geometry and Physics, 21:2 (1997), 97
Theoret. and Math. Phys., 103:3 (1995), 681–700
L.A. Ferreira, J.Luis Miramontes, Joaquín Sánchez Guillén, “Solitons, τ-functions and hamiltonian reduction for non-Abelian conformal affine Toda theories”, Nuclear Physics B, 449:3 (1995), 631
C.P. Constantinidis, L.A. Ferreira, J.F. Gomes, A.H. Zimerman, “Connection between the affine and conformal affine Toda models and their Hirota solution”, Physics Letters B, 298:1-2 (1993), 88
H. Aratyn, L.A. Ferreira, J.F. Gomes, A.H. Zimerman, “Kac-Moody construction of Toda type field theories”, Physics Letters B, 254:3-4 (1991), 372
L. A. Ferreira, R. M. Londe, “Solutions to higher Hamiltonians in the Toda hierarchies”, Journal of Mathematical Physics, 31:12 (1990), 3041
A. Yu. Daletskii, G. B. Podkolzin, “A group approach to the integration of the infinite Toda chain”, Ukr Math J, 40:4 (1989), 445