Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1975, Volume 23, Number 1, Pages 51–68 (Mi tmf3750)  

This article is cited in 203 scientific papers (total in 203 papers)

Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg–de Vries equation

A. R. Its, V. B. Matveev
References:
Abstract: Explicit description of periodic potentials for which the corresponding Schrodinger operator N possesses only the finite number of energy gaps is obtained. Using this result the solution of the Korteveg–de Vries equation with the “finite-gap” initial condition is expressed, by means of the N-dimensional Θ-function, N being the number of the nondegenerate energy gaps. The following characteristic property of the N-gap periodic potentials and the N-soliton decreasing potentials is discovered: the existence of two solutions ψ1(x,λ),ψ2(x,λ) of the Schrodinger equation, for which the product ψ1,ψ2 is the polynomial P (degP=N. N is the number of gaps or the number of bound states of H) from the spectral parameter λ.
Received: 09.07.1974
English version:
Theoretical and Mathematical Physics, 1975, Volume 23, Issue 1, Pages 343–355
DOI: https://doi.org/10.1007/BF01038218
Bibliographic databases:
Language: Russian
Citation: A. R. Its, V. B. Matveev, “Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg–de Vries equation”, TMF, 23:1 (1975), 51–68; Theoret. and Math. Phys., 23:1 (1975), 343–355
Citation in format AMSBIB
\Bibitem{ItsMat75}
\by A.~R.~Its, V.~B.~Matveev
\paper Schr\"odinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg--de~Vries equation
\jour TMF
\yr 1975
\vol 23
\issue 1
\pages 51--68
\mathnet{http://mi.mathnet.ru/tmf3750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=479120}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 23
\issue 1
\pages 343--355
\crossref{https://doi.org/10.1007/BF01038218}
Linking options:
  • https://www.mathnet.ru/eng/tmf3750
  • https://www.mathnet.ru/eng/tmf/v23/i1/p51
  • This publication is cited in the following 203 articles:
    1. Liang Guan, Xianguo Geng, Xue Geng, “Algebro-geometric quasiperiodic solutions of the nonlocal reverse space–time sine-Gordon equation”, Theoret. and Math. Phys., 222:1 (2025), 69–84  mathnet  crossref  crossref
    2. A. B. Khasanov, R. Kh. Eshbekov, T. G. Hasanov, “Integration of a non-linear Hirota type equation with additional terms”, Izv. Math., 89:1 (2025), 196–219  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. Liang Guan, Xianguo Geng, Xue Geng, “Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations”, Qual. Theory Dyn. Syst., 23:4 (2024)  crossref
    4. Oktay Veliev, Springer Tracts in Modern Physics, 291, Multidimensional Periodic Schrödinger Operator, 2024, 31  crossref
    5. Xianguo Geng, Minxin Jia, Bo Xue, Yunyun Zhai, “Application of tetragonal curves to coupled Boussinesq equations”, Lett Math Phys, 114:1 (2024)  crossref
    6. A. O. Smirnov, I. V. Anisimov, “Finite-gap solutions of the real modified Korteweg–de Vries equation”, Theoret. and Math. Phys., 220:1 (2024), 1224–1240  mathnet  crossref  crossref  mathscinet  adsnasa
    7. A. B. Khasanov, T. G. Khasanov, “The Cauchy Problem for the Nonlinear Complex Modified Korteweg-de Vries Equation with Additional Terms in the Class of Periodic Infinite-Gap Functions”, Sib Math J, 65:4 (2024), 846  crossref
    8. A. B. Khasanov, T. G. Khasanov, “Zadacha Koshi dlya nelineinogo kompleksnogo modifitsirovannogo uravneniya Kortevega — de Friza (kmKdF) s dopolnitelnymi chlenami v klasse periodicheskikh beskonechnozonnykh funktsii”, Sib. matem. zhurn., 65:4 (2024), 735–759  mathnet  crossref
    9. A. B. Khasanov, T. G. Khasanov, “Cauchy Problem for the Korteweg–De Vries Equation in the Class of Periodic Infinite-Gap Functions”, J Math Sci, 283:4 (2024), 674  crossref
    10. Julia Bernatska, “Reality conditions for the KdV equation and exact quasi-periodic solutions in finite phase spaces”, Journal of Geometry and Physics, 2024, 105322  crossref
    11. G. S. Mauleshova, A. E. Mironov, “Difference Analog of the Lamé Operator”, Proc. Steklov Inst. Math., 325 (2024), 177–187  mathnet  crossref  crossref  zmath
    12. Yaru Xu, Xianguo Geng, Yunyun Zhai, “Riemann theta function solutions to the semi-discrete Boussinesq equations”, Physica D: Nonlinear Phenomena, 470 (2024), 134398  crossref
    13. Iskander A. Taimanov, “Finite-zone PT-potentials”, Funct. Anal. Appl., 58:4 (2024), 438–450  mathnet  crossref  crossref
    14. M. M. Matekubov, “Integrirovanie uravneniya tipa Kortevega–de Friza s nagruzhennym chlenom v klasse periodicheskikh funktsii”, Izv. IMI UdGU, 64 (2024), 60–69  mathnet  crossref
    15. A. B. Khasanov, A. A. Abdivokhidov, R. Kh. Eshbekov, “Negative Order Modified Korteweg–de Vries–Liouville (nmKdV-L) Equation in the Class of Periodic Infinite-gap Functions”, Lobachevskii J Math, 45:12 (2024), 6497  crossref
    16. S. V. Agapov, A. E. Mironov, “Finite-Gap Potentials and Integrable Geodesic Equations on a 2-Surface”, Proc. Steklov Inst. Math., 327 (2024), 1–11  mathnet  crossref  crossref
    17. G. U. Urazboev, M. M. Khasanov, I. I. Baltaeva, “Integrirovanie uravneniya Kortevega – de Friza otritsatelnogo poryadka s istochnikom spetsialnogo vida”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 44 (2023), 31–43  mathnet  crossref
    18. G. S. Mauleshova, A. E. Mironov, “One-dimensional finite-gap Schrödinger operators as a limit of commuting difference operators”, Dokl. Math., 108:1 (2023), 312–315  mathnet  crossref  crossref  elib
    19. M. M. Khasanov, I. D. Rakhimov, “Integrirovanie uravneniya KdF otritsatelnogo poryadka so svobodnym chlenom v klasse periodicheskikh funktsii”, Chebyshevskii sb., 24:2 (2023), 266–275  mathnet  crossref
    20. Gino Biondini, Xu-Dan Luo, Jeffrey Oregero, Alexander Tovbis, “Elliptic finite-band potentials of a non-self-adjoint Dirac operator”, Advances in Mathematics, 429 (2023), 109188  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1733
    Full-text PDF :721
    References:97
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025