Abstract:
Explicit description of periodic potentials for which the corresponding Schrodinger
operator N possesses only the finite number of energy gaps is obtained. Using this result
the solution of the Korteveg–de Vries equation with the “finite-gap” initial condition
is expressed, by means of the N-dimensional Θ-function, N being the number of
the nondegenerate energy gaps. The following characteristic property of the N-gap
periodic potentials and the N-soliton decreasing potentials is discovered: the existence
of two solutions ψ1(x,λ),ψ2(x,λ) of the Schrodinger equation, for which the product ψ1,ψ2 is the polynomial P (degP=N. N is the number of gaps or the number of bound states of H) from the spectral parameter λ.
Citation:
A. R. Its, V. B. Matveev, “Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg–de Vries equation”, TMF, 23:1 (1975), 51–68; Theoret. and Math. Phys., 23:1 (1975), 343–355
\Bibitem{ItsMat75}
\by A.~R.~Its, V.~B.~Matveev
\paper Schr\"odinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg--de~Vries equation
\jour TMF
\yr 1975
\vol 23
\issue 1
\pages 51--68
\mathnet{http://mi.mathnet.ru/tmf3750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=479120}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 23
\issue 1
\pages 343--355
\crossref{https://doi.org/10.1007/BF01038218}
Linking options:
https://www.mathnet.ru/eng/tmf3750
https://www.mathnet.ru/eng/tmf/v23/i1/p51
This publication is cited in the following 203 articles:
Liang Guan, Xianguo Geng, Xue Geng, “Algebro-geometric quasiperiodic solutions of the nonlocal reverse space–time sine-Gordon equation”, Theoret. and Math. Phys., 222:1 (2025), 69–84
A. B. Khasanov, R. Kh. Eshbekov, T. G. Hasanov, “Integration of a non-linear Hirota type equation with additional terms”, Izv. Math., 89:1 (2025), 196–219
Liang Guan, Xianguo Geng, Xue Geng, “Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations”, Qual. Theory Dyn. Syst., 23:4 (2024)
Oktay Veliev, Springer Tracts in Modern Physics, 291, Multidimensional Periodic Schrödinger Operator, 2024, 31
Xianguo Geng, Minxin Jia, Bo Xue, Yunyun Zhai, “Application of tetragonal curves to coupled Boussinesq equations”, Lett Math Phys, 114:1 (2024)
A. O. Smirnov, I. V. Anisimov, “Finite-gap solutions of the real modified Korteweg–de Vries equation”, Theoret. and Math. Phys., 220:1 (2024), 1224–1240
A. B. Khasanov, T. G. Khasanov, “The Cauchy Problem for the Nonlinear Complex Modified Korteweg-de Vries Equation with Additional Terms in the Class of Periodic Infinite-Gap Functions”, Sib Math J, 65:4 (2024), 846
A. B. Khasanov, T. G. Khasanov, “Zadacha Koshi dlya nelineinogo kompleksnogo modifitsirovannogo uravneniya Kortevega — de Friza (kmKdF) s dopolnitelnymi chlenami v klasse periodicheskikh beskonechnozonnykh funktsii”, Sib. matem. zhurn., 65:4 (2024), 735–759
A. B. Khasanov, T. G. Khasanov, “Cauchy Problem for the Korteweg–De Vries Equation in the Class of Periodic Infinite-Gap Functions”, J Math Sci, 283:4 (2024), 674
Julia Bernatska, “Reality conditions for the KdV equation and exact quasi-periodic solutions in finite phase spaces”, Journal of Geometry and Physics, 2024, 105322
G. S. Mauleshova, A. E. Mironov, “Difference Analog of the Lamé Operator”, Proc. Steklov Inst. Math., 325 (2024), 177–187
Yaru Xu, Xianguo Geng, Yunyun Zhai, “Riemann theta function solutions to the semi-discrete Boussinesq equations”, Physica D: Nonlinear Phenomena, 470 (2024), 134398
M. M. Matekubov, “Integrirovanie uravneniya tipa Kortevega–de Friza s nagruzhennym chlenom v klasse periodicheskikh funktsii”, Izv. IMI UdGU, 64 (2024), 60–69
A. B. Khasanov, A. A. Abdivokhidov, R. Kh. Eshbekov, “Negative Order Modified Korteweg–de Vries–Liouville (nmKdV-L) Equation in the Class of Periodic Infinite-gap Functions”, Lobachevskii J Math, 45:12 (2024), 6497
S. V. Agapov, A. E. Mironov, “Finite-Gap Potentials and Integrable Geodesic Equations on a 2-Surface”, Proc. Steklov Inst. Math., 327 (2024), 1–11
G. U. Urazboev, M. M. Khasanov, I. I. Baltaeva, “Integrirovanie uravneniya Kortevega – de Friza otritsatelnogo poryadka s istochnikom spetsialnogo vida”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 44 (2023), 31–43
G. S. Mauleshova, A. E. Mironov, “One-dimensional finite-gap Schrödinger operators as a limit of commuting difference operators”, Dokl. Math., 108:1 (2023), 312–315
M. M. Khasanov, I. D. Rakhimov, “Integrirovanie uravneniya KdF otritsatelnogo poryadka so svobodnym chlenom v klasse periodicheskikh funktsii”, Chebyshevskii sb., 24:2 (2023), 266–275
Gino Biondini, Xu-Dan Luo, Jeffrey Oregero, Alexander Tovbis, “Elliptic finite-band potentials of a non-self-adjoint Dirac operator”, Advances in Mathematics, 429 (2023), 109188