Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 132, Number 3, Pages 388–398
DOI: https://doi.org/10.4213/tmf369
(Mi tmf369)
 

This article is cited in 20 scientific papers (total in 20 papers)

Ultratertiary Quantization of Thermodynamics

V. P. Maslov

M. V. Lomonosov Moscow State University
References:
Abstract: We show that if the Dirac–Bogoliubov rule for replacing the bosonic creation and annihilation operators with the c-numbers is used, then the ultratertiary quantization allows obtaining the Bardeen–Cooper–Schrieffer–Bogoliubov formulas.
Keywords: asymptotic behavior, third quantization, quantization of thermodynamics.
Received: 08.04.2002
English version:
Theoretical and Mathematical Physics, 2002, Volume 132, Issue 3, Pages 1222–1232
DOI: https://doi.org/10.1023/A:1020216003625
Bibliographic databases:
Language: Russian
Citation: V. P. Maslov, “Ultratertiary Quantization of Thermodynamics”, TMF, 132:3 (2002), 388–398; Theoret. and Math. Phys., 132:3 (2002), 1222–1232
Citation in format AMSBIB
\Bibitem{Mas02}
\by V.~P.~Maslov
\paper Ultratertiary Quantization of Thermodynamics
\jour TMF
\yr 2002
\vol 132
\issue 3
\pages 388--398
\mathnet{http://mi.mathnet.ru/tmf369}
\crossref{https://doi.org/10.4213/tmf369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1956667}
\zmath{https://zbmath.org/?q=an:1068.82018}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 132
\issue 3
\pages 1222--1232
\crossref{https://doi.org/10.1023/A:1020216003625}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178686400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf369
  • https://doi.org/10.4213/tmf369
  • https://www.mathnet.ru/eng/tmf/v132/i3/p388
  • This publication is cited in the following 20 articles:
    1. V. P. Maslov, “Undistinguishing statistics of objectively distinguishable objects: Thermodynamics and superfluidity of classical gas”, Math Notes, 94:5-6 (2013), 722  crossref
    2. Golikov D.S., “Maslov symbol for the density matrix in the case of quantization of pairs”, Moscow University Physics Bulletin, 65:6 (2010), 466–470  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    3. Maslov, VP, “On the appearance of the lambda-point in a weakly nonideal Bose gas and the two-liquid Thiess-Landau model”, Russian Journal of Mathematical Physics, 16:2 (2009), 146  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. G. V. Koval', V. P. Maslov, “Generalization of the Bardeen–Cooper–Schrieffer method for pair interactions”, Theoret. and Math. Phys., 154:3 (2008), 495–502  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Maslov VP, “On the superfluidity of classical liquid in nanotubes, I. Case of even number of neutrons”, Russian Journal of Mathematical Physics, 14:3 (2007), 304–318  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Golikov DS, Koval' GV, “The Maslov symbol for the density matrix”, Doklady Mathematics, 75:1 (2007), 143–146  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. Koval, GV, “Ultrasecondary quantization of fermions at nonzero temperature”, Doklady Mathematics, 76:2 (2007), 718  crossref  mathscinet  zmath  isi  scopus  scopus
    8. V. P. Maslov, “Superfluidity of classical liquid in a nanotube for even and odd numbers of neutrons in a molecule”, Theoret. and Math. Phys., 153:3 (2007), 1677–1696  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. G. V. Koval', V. P. Maslov, “Ultrasecond Quantization at Temperatures Distinct from Zero”, Math. Notes, 82:1 (2007), 47–51  mathnet  crossref  crossref  mathscinet  isi  elib
    10. Golikov, DS, “Ultrasecondary Maslov quantization in the case of the Bardin-Cooper-Schrieffer model”, Doklady Mathematics, 73:3 (2006), 457  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    11. Maslov, VP, “Resonance between one-particle (Bogolyubov) and two-particle series for a superfluid in a capillary”, Doklady Mathematics, 72:2 (2005), 802  mathscinet  zmath  isi  elib
    12. Maslov, VP, “Resonance between one-particle (Bogoliubov) and two-particle series in a superfluid liquid in a capillary”, Russian Journal of Mathematical Physics, 12:3 (2005), 369  mathscinet  zmath  isi
    13. V. P. Maslov, “Dependence of the Superfluidity Criterion on the Capillary Radius”, Theoret. and Math. Phys., 143:3 (2005), 741–759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. V. P. Maslov, “Phase Transition from the “Condensate” State”, Math. Notes, 74:4 (2003), 599–603  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. Koval, GV, “An inequality for entropy corresponding to solutions of a unitarily nonlinear equation in quantum thermodynamics”, Doklady Mathematics, 68:3 (2003), 449  mathscinet  adsnasa  isi
    16. Koval', GV, “A modification of Maslov's two-level model”, Russian Journal of Mathematical Physics, 10:2 (2003), 149  mathscinet  zmath  isi
    17. V. P. Maslov, “Econophysics and Quantum Statistics”, Math. Notes, 72:6 (2002), 811–818  mathnet  crossref  crossref  mathscinet  zmath  isi
    18. Maslov, VP, “The notions of entropy, Hamiltonian, temperature, and thermodynamical limit in probability theory used for solving model problems in econophysics”, Russian Journal of Mathematical Physics, 9:4 (2002), 437  mathscinet  zmath  isi
    19. Koval', GV, “The procedure of carrying the exponential through ultrasecond-quantized operators for weakly nonideal Bose gases with Cooper pairs. I”, Russian Journal of Mathematical Physics, 9:4 (2002), 486  mathscinet  zmath  isi
    20. V. P. Maslov, “Quantum statistics methods from the viewpoint of probability theory. I”, Theory Probab. Appl., 47:4 (2003), 665–683  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:705
    Full-text PDF :295
    References:145
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025