Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1971, Volume 6, Number 3, Pages 364–391 (Mi tmf3645)  

This article is cited in 38 scientific papers (total in 38 papers)

Algebraic approach to the solution of a one-dimensional model of N interacting particles

A. M. Perelomov
References:
Abstract: An algebraic apparatus based on increasing Bp+ and decreasing Bp operators (p=2,3,,N) is developed to solve the one-dimensional model of N interacting particles studied by Calogero [J. Math. Phys., 10, 2191, 2197 (1969)]. The determination of the wave functions of the Schrödinger equation is then reduced to the operation of differentiation. Explicit expressions are obtained for the operators Bp and Bp+ for p=2,3, and 4. All the wave functions for the case of four particles can be found by means of these expressions. For an arbitrary number of particles this then yields an expression for two new series of wave functions that depend on three quantum numbers. The operators of higher order can be found by the same method
Received: 24.08.1970
English version:
Theoretical and Mathematical Physics, 1971, Volume 6, Issue 3, Pages 285–282
DOI: https://doi.org/10.1007/BF01030108
Language: Russian
Citation: A. M. Perelomov, “Algebraic approach to the solution of a one-dimensional model of N interacting particles”, TMF, 6:3 (1971), 364–391; Theoret. and Math. Phys., 6:3 (1971), 285–282
Citation in format AMSBIB
\Bibitem{Per71}
\by A.~M.~Perelomov
\paper Algebraic approach to~the~solution of~a~one-dimensional model of~$N$ interacting particles
\jour TMF
\yr 1971
\vol 6
\issue 3
\pages 364--391
\mathnet{http://mi.mathnet.ru/tmf3645}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 6
\issue 3
\pages 285--282
\crossref{https://doi.org/10.1007/BF01030108}
Linking options:
  • https://www.mathnet.ru/eng/tmf3645
  • https://www.mathnet.ru/eng/tmf/v6/i3/p364
  • This publication is cited in the following 38 articles:
    1. A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov, “Commutative families in W∞, integrable many-body systems and hypergeometric τ-functions”, J. High Energ. Phys., 2023:9 (2023)  crossref
    2. Hossein Panahi, Seyede Amene Najafizade, Marjan Mohammadkazemi Gavabar, “Algebraic Method for Perturbed Three-Body Systems of A2 Solvable Potential”, Few-Body Syst, 61:1 (2020)  crossref
    3. Luis Inzunza, Mikhail S. Plyushchay, “Hidden symmetries of rationally deformed superconformal mechanics”, Phys. Rev. D, 99:2 (2019)  crossref
    4. Carinena J.F., Inzunza L., Plyushchay M.S., “Rational Deformations of Conformal Mechanics”, Phys. Rev. D, 98:2 (2018), 026017  crossref  isi
    5. Kumar Abhinav, B. Chandrasekhar, Vivek M. Vyas, Prasanta K. Panigrahi, “Heisenberg symmetry and collective modes of one dimensional unitary correlated fermions”, Physics Letters A, 381:5 (2017), 457  crossref
    6. E Bettelheim, “Integrable quantum hydrodynamics in two-dimensional phase space”, J. Phys. A: Math. Theor., 46:50 (2013), 505001  crossref
    7. Shashi C. L. Srivastava, Sudhir R. Jain, “Random reverse-cyclic matrices and screened harmonic oscillator”, Phys. Rev. E, 85:4 (2012)  crossref
    8. Vladimir A. Yurovsky, Maxim Olshanii, David S. Weiss, Advances In Atomic, Molecular, and Optical Physics, 55, 2008, 61  crossref
    9. J F Cariñena, A M Perelomov, M F Rañada, “Isochronous classical systems and quantum systems with equally spaced spectra”, J. Phys.: Conf. Ser., 87 (2007), 012007  crossref
    10. Ryu Sasaki, NATO Science Series, 201, Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 2006, 259  crossref
    11. Patrick Desrosiers, Luc Lapointe, Pierre Mathieu, “Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model”, Nuclear Physics B, 674:3 (2003), 615  crossref
    12. R. Caseiro, J.-P. Françoise, R. Sasaki, “Quadratic algebra associated with rational Calogero-Moser models”, Journal of Mathematical Physics, 42:11 (2001), 5329  crossref
    13. Alexander Turbiner, Calogero—Moser— Sutherland Models, 2000, 473  crossref
    14. Miki Wadati, Hideaki Ujino, Calogero—Moser— Sutherland Models, 2000, 521  crossref
    15. S P Khastgir, A J Pocklington, R Sasaki, “Quantum Calogero-Moser models: integrability for all root systems”, J. Phys. A: Math. Gen., 33:49 (2000), 9033  crossref
    16. S Chaturvedi, V Gupta, “Identities involving elementary symmetric functions”, J. Phys. A: Math. Gen., 33:29 (2000), L251  crossref
    17. N. Gurappa, Prasanta K. Panigrahi, “Equivalence of the Calogero-Sutherland model to free harmonic oscillators”, Phys. Rev. B, 59:4 (1999), R2490  crossref
    18. S. E. Konstein, “Three-particle Calogero model: Supertraces and ideals on the observables algebra”, Theoret. and Math. Phys., 116:1 (1998), 836–845  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. N. GURAPPA, PRASANTA K. PANIGRAHI, V. SRINIVASAN, “DEGENERACY STRUCTURE OF THE CALOGERO–SUTHERLAND MODEL: AN ALGEBRAIC APPROACH”, Mod. Phys. Lett. A, 13:05 (1998), 339  crossref
    20. Lars Brink, Alexander Turbiner, Niclas Wyllard, “Hidden algebras of the (super) Calogero and Sutherland models”, Journal of Mathematical Physics, 39:3 (1998), 1285  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:581
    Full-text PDF :240
    References:97
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025