Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 132, Number 2, Pages 318–328
DOI: https://doi.org/10.4213/tmf364
(Mi tmf364)
 

This article is cited in 27 scientific papers (total in 27 papers)

Classical Gauge Theory of Gravity

G. A. Sardanashvily

M. V. Lomonosov Moscow State University
References:
Abstract: The classical theory of gravity is formulated as a gauge theory on a frame bundle with spontaneous symmetry breaking caused by the existence of Dirac fermionic fields. The pseudo-Reimannian metric (tetrad field) is the corresponding Higgs field. We consider two variants of this theory. In the first variant, gravity is represented by the pseudo-Reimannian metric as in general relativity theory; in the second variant, it is represented by the effective metric as in Logunov's relativistic theory of gravity. The configuration space, Dirac operator, and Lagrangians are constructed for both variants.
Keywords: gravity, gauge field, Higgs field, spinor field.
Received: 21.02.2002
English version:
Theoretical and Mathematical Physics, 2002, Volume 132, Issue 2, Pages 1163–1171
DOI: https://doi.org/10.1023/A:1019712911009
Bibliographic databases:
Language: Russian
Citation: G. A. Sardanashvily, “Classical Gauge Theory of Gravity”, TMF, 132:2 (2002), 318–328; Theoret. and Math. Phys., 132:2 (2002), 1163–1171
Citation in format AMSBIB
\Bibitem{Sar02}
\by G.~A.~Sardanashvily
\paper Classical Gauge Theory of Gravity
\jour TMF
\yr 2002
\vol 132
\issue 2
\pages 318--328
\mathnet{http://mi.mathnet.ru/tmf364}
\crossref{https://doi.org/10.4213/tmf364}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1956653}
\zmath{https://zbmath.org/?q=an:1066.83537}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 132
\issue 2
\pages 1163--1171
\crossref{https://doi.org/10.1023/A:1019712911009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178359000011}
Linking options:
  • https://www.mathnet.ru/eng/tmf364
  • https://doi.org/10.4213/tmf364
  • https://www.mathnet.ru/eng/tmf/v132/i2/p318
  • This publication is cited in the following 27 articles:
    1. Alcides Garat, “On the Nature of the New Group LB1”, Int J Theor Phys, 63:10 (2024)  crossref
    2. Debono I., Smoot G.F., “General Relativity and Cosmology: Unsolved Questions and Future Directions”, Universe, 2:4 (2016), UNSP 23  crossref  isi  scopus
    3. Oikonomou V.K., “Localized Fermions on Domain Walls and Extended Supersymmetric Quantum Mechanics”, Class. Quantum Gravity, 31:2 (2014), 025018  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. G. A. Sardanashvily, “Classical Higgs fields”, Theoret. and Math. Phys., 181:3 (2014), 1599–1611  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Capriotti S., “Differential Geometry, Palatini Gravity and Reduction”, J. Math. Phys., 55:1 (2014), 012902  crossref  mathscinet  zmath  adsnasa  isi
    6. Julve J. Tiemblo A., “A Perturbation Approach to Translational Gravity”, Int. J. Geom. Methods Mod. Phys., 10:10 (2013), 1350062  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Oikonomou V.K., “Graded Geometric Structures Underlying F-Theory Related Defect Theories”, Int. J. Mod. Phys. A, 28:21 (2013)  crossref  mathscinet  isi  elib  scopus  scopus
    8. Oikonomou V.K., “Hidden Supersymmetry in Dirac Fermion Quasinormal Modes of Black Holes”, Int. J. Mod. Phys. A, 28:15 (2013)  crossref  mathscinet  isi  elib  scopus  scopus
    9. Pitts J.B., “The Nontriviality of Trivial General Covariance: How Electrons Restrict ‘Time’ Coordinates, Spinors (Almost) Fit Into Tensor Calculus, and 7/16 of a Tetrad Is Surplus Structure”, Stud. Hist. Philos. Mod. Phys., 43:1 (2012), 1–24  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Malyshev C., “Non-singular screw dislocations as the Coulomb gas with smoothed-out coupling and the renormalization of the shear modulus”, J. Phys. A: Math. Theor., 44:28 (2011), 285003  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Julve J., Tiemblo A., “Dynamical Variables in Gauge-Translational Gravity”, Int J Geom Methods Mod Phys, 8:2 (2011), 381–393  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    12. Martin-Martin J., Tiemblo A., “Gravity as a Gauge Theory of Translations”, International Journal of Geometric Methods in Modern Physics, 7:2 (2010), 323–335  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Viennot D., “Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity”, J Math Phys, 51:10 (2010), 103501  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    14. Giachetta G., “On the notion of gauge symmetries of generic Lagrangian field theory”, Journal of Mathematical Physics, 50:1 (2009), 012903  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    15. Sardanashvily G., “Classical Field Theory. Advanced Mathematical Formulation”, International Journal of Geometric Methods in Modern Physics, 5:7 (2008), 1163  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Sardanashvily G., “Mathematical models of spontaneous symmetry breaking - Preface”, International Journal of Geometric Methods in Modern Physics, 5:2 (2008), V-XVI  mathscinet  zmath  isi
    17. Aldaya V., “Gauge theories of gravity and mass generation”, International Journal of Geometric Methods in Modern Physics, 5:2 (2008), 197  crossref  mathscinet  zmath  isi  scopus  scopus
    18. Martin J., “The role of translational invariance in nonlinear gauge theories of gravity”, International Journal of Geometric Methods in Modern Physics, 5:2 (2008), 253  crossref  mathscinet  zmath  isi  scopus  scopus
    19. Sardanashvily G., “Supermetrics on supermanifolds”, International Journal of Geometric Methods in Modern Physics, 5:2 (2008), 271  crossref  mathscinet  zmath  isi  scopus  scopus
    20. “PREFACE”, Int. J. Geom. Methods Mod. Phys., 05:02 (2008), v  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:989
    Full-text PDF :402
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025