Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1971, Volume 6, Number 3, Pages 328–334 (Mi tmf3636)  

This article is cited in 3 scientific papers (total in 3 papers)

Radius of the $\pi$-meson and analytic properties of its form factor

V. Z. Baluni
Full-text PDF (555 kB) Citations (3)
References:
Abstract: By solving the extremal problem for the functional
$$ \Phi\{F,f\}=\int_{4m_{\pi^2}}^{\infty}f(t)|F_\pi(t)|^2\,dt, $$
where $f(t)$ is a given position function and $F_\pi(t)$ is the form factor of the $\pi$-meson withknown analytic properties, upper bounds are established for the radius of the $\pi$-meson and the behavior of its form factor in the space-like region ($t\leqslant 0$). These are determined by the values of the form-factor modulus in the annihilation channel ($t\geqslant 4m_{\pi^2}$). It is assumed on the basis of experiments at Novosibirsk and Orsay with colliding beams in the interval $4m_{\pi^2}<t\lesssim1$ (BeV)$^2$ that the form factor can be represented by the Breit–Wigner formula, it is also assumed that the modulus of the form factor for $t\gtrsim1$ (BeV)$^2$ does not exceed a certain constant value. The following results are then obtained: $r_{\max}=0{,}69\pm0{,}14$ (Novosibirsk) and $r_{\max}=0{,}9\pm0{,}06$ (Orsay).
Received: 17.07.1970
English version:
Theoretical and Mathematical Physics, 1971, Volume 6, Issue 3, Pages 236–241
DOI: https://doi.org/10.1007/BF01030104
Language: Russian
Citation: V. Z. Baluni, “Radius of the $\pi$-meson and analytic properties of its form factor”, TMF, 6:3 (1971), 328–334; Theoret. and Math. Phys., 6:3 (1971), 236–241
Citation in format AMSBIB
\Bibitem{Bal71}
\by V.~Z.~Baluni
\paper Radius of~the $\pi$-meson and analytic properties of~its form factor
\jour TMF
\yr 1971
\vol 6
\issue 3
\pages 328--334
\mathnet{http://mi.mathnet.ru/tmf3636}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 6
\issue 3
\pages 236--241
\crossref{https://doi.org/10.1007/BF01030104}
Linking options:
  • https://www.mathnet.ru/eng/tmf3636
  • https://www.mathnet.ru/eng/tmf/v6/i3/p328
  • This publication is cited in the following 3 articles:
    1. Virendra Singh, A. K. Raina, “Bounds on Form Factors and Propagators”, Fortschr. Phys., 27:11-12 (1979), 561  crossref
    2. Varoujan Baluni, O.V. Dumbrais, “Integral bounds on the total cross sections of the Compton scattering and the electron-positron annihilation into hadrons”, Nuclear Physics B, 51 (1973), 289  crossref
    3. V. Z. Baluni, “Radius of the $\pi$-meson and the proton and analytic properties of the form factor”, Theoret. and Math. Phys., 10:1 (1972), 13–21  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :96
    References:54
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025