Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1974, Volume 19, Number 1, Pages 3–13 (Mi tmf3560)  

This article is cited in 10 scientific papers (total in 10 papers)

Generalized Pauli–Villars regularization in the presence of zero-mass particles

D. A. Slavnov
References:
Abstract: A limiting regularization procedure is proposed that enables one to avoid without subtractions not only ultraviolet but also infrared divergences.
Received: 28.02.1973
English version:
Theoretical and Mathematical Physics, 1974, Volume 19, Issue 1, Pages 307–314
DOI: https://doi.org/10.1007/BF01037186
Bibliographic databases:
Language: Russian
Citation: D. A. Slavnov, “Generalized Pauli–Villars regularization in the presence of zero-mass particles”, TMF, 19:1 (1974), 3–13; Theoret. and Math. Phys., 19:1 (1974), 307–314
Citation in format AMSBIB
\Bibitem{Sla74}
\by D.~A.~Slavnov
\paper Generalized Pauli--Villars regularization in the presence of zero-mass particles
\jour TMF
\yr 1974
\vol 19
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/tmf3560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468855}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 19
\issue 1
\pages 307--314
\crossref{https://doi.org/10.1007/BF01037186}
Linking options:
  • https://www.mathnet.ru/eng/tmf3560
  • https://www.mathnet.ru/eng/tmf/v19/i1/p3
  • This publication is cited in the following 10 articles:
    1. D. A. Slavnov, “Renormalization over lines”, Theoret. and Math. Phys., 110:3 (1997), 316–328  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. E.B. Manoukian, “On the absence of logarithmic growths in mass parameters in renormalized perturbation theory. II: Generalized conditions”, Reports on Mathematical Physics, 24:1 (1986), 87  crossref
    3. E. B. Manoukian, “Generalized conditions for the distributional zero-mass limit of renormalized Feynman amplitudes in Minkowski space”, Nuov Cim A, 92:3 (1986), 273  crossref
    4. E.B. Manoukian, “On the absence of logarithmic growths in mass parameters in renormalized perturbation theory”, Reports on Mathematical Physics, 22:3 (1985), 373  crossref
    5. Pure and Applied Mathematics, 106, Renormalization, 1983, 193  crossref
    6. Edward B. Manoukian, “Zero-mass behavior of Feynman amplitudes. I”, Journal of Mathematical Physics, 21:5 (1980), 1218  crossref
    7. V. E. Zakharov, L. A. Takhtadzhyan, “Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet”, Theoret. and Math. Phys., 38:1 (1979), 17–23  mathnet  crossref  mathscinet
    8. E. A. Kuznetsov, A. V. Mikhailov, “On the complete integrability of the two-dimensional classical Thirring model”, Theoret. and Math. Phys., 30:3 (1977), 193–200  mathnet  crossref  mathscinet
    9. A. K. Vidybida, “Cauchy problem for the Bogolyubov (BBGKY) equations. The BCS model”, Theoret. and Math. Phys., 25:1 (1975), 971–978  mathnet  crossref  mathscinet  zmath
    10. D. A. Slavnov, “Unitarity and causality in the case of generalized Pauli–Villars regularization”, Theoret. and Math. Phys., 19:3 (1974), 521–527  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :122
    References:60
    First page:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025