Abstract:
A limiting regularization procedure is proposed that enables one to avoid without subtractions
not only ultraviolet but also infrared divergences.
Citation:
D. A. Slavnov, “Generalized Pauli–Villars regularization in the presence of zero-mass particles”, TMF, 19:1 (1974), 3–13; Theoret. and Math. Phys., 19:1 (1974), 307–314
\Bibitem{Sla74}
\by D.~A.~Slavnov
\paper Generalized Pauli--Villars regularization in the presence of zero-mass particles
\jour TMF
\yr 1974
\vol 19
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/tmf3560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468855}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 19
\issue 1
\pages 307--314
\crossref{https://doi.org/10.1007/BF01037186}
Linking options:
https://www.mathnet.ru/eng/tmf3560
https://www.mathnet.ru/eng/tmf/v19/i1/p3
This publication is cited in the following 10 articles:
D. A. Slavnov, “Renormalization over lines”, Theoret. and Math. Phys., 110:3 (1997), 316–328
E.B. Manoukian, “On the absence of logarithmic growths in mass parameters in renormalized perturbation theory. II: Generalized conditions”, Reports on Mathematical Physics, 24:1 (1986), 87
E. B. Manoukian, “Generalized conditions for the distributional zero-mass limit of renormalized Feynman amplitudes in Minkowski space”, Nuov Cim A, 92:3 (1986), 273
E.B. Manoukian, “On the absence of logarithmic growths in mass parameters in renormalized perturbation theory”, Reports on Mathematical Physics, 22:3 (1985), 373
Pure and Applied Mathematics, 106, Renormalization, 1983, 193
Edward B. Manoukian, “Zero-mass behavior of Feynman amplitudes. I”, Journal of Mathematical Physics, 21:5 (1980), 1218
V. E. Zakharov, L. A. Takhtadzhyan, “Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet”, Theoret. and Math. Phys., 38:1 (1979), 17–23
E. A. Kuznetsov, A. V. Mikhailov, “On the complete integrability of the two-dimensional classical Thirring model”, Theoret. and Math. Phys., 30:3 (1977), 193–200
A. K. Vidybida, “Cauchy problem for the Bogolyubov (BBGKY) equations. The BCS model”, Theoret. and Math. Phys., 25:1 (1975), 971–978
D. A. Slavnov, “Unitarity and causality in the case of generalized Pauli–Villars regularization”, Theoret. and Math. Phys., 19:3 (1974), 521–527