Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1974, Volume 18, Number 3, Pages 353–366 (Mi tmf3551)  

This article is cited in 8 scientific papers (total in 8 papers)

Three-body problem in strong coupling theory

S. V. Semenov
References:
Abstract: Bogolyubov's method is used to study the problem of three bodies that interact strongly with a scalar field. An iterative scheme is constructed for finding the energy and wave function of the system and an equation of relative motion is obtained. The limiting case of this equation corresponding to the scattering problem is investigated.
Received: 15.01.1973
English version:
Theoretical and Mathematical Physics, 1974, Volume 18, Issue 3, Pages 251–260
DOI: https://doi.org/10.1007/BF01035646
Language: Russian
Citation: S. V. Semenov, “Three-body problem in strong coupling theory”, TMF, 18:3 (1974), 353–366; Theoret. and Math. Phys., 18:3 (1974), 251–260
Citation in format AMSBIB
\Bibitem{Sem74}
\by S.~V.~Semenov
\paper Three-body problem in strong coupling theory
\jour TMF
\yr 1974
\vol 18
\issue 3
\pages 353--366
\mathnet{http://mi.mathnet.ru/tmf3551}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 18
\issue 3
\pages 251--260
\crossref{https://doi.org/10.1007/BF01035646}
Linking options:
  • https://www.mathnet.ru/eng/tmf3551
  • https://www.mathnet.ru/eng/tmf/v18/i3/p353
  • This publication is cited in the following 8 articles:
    1. O. A. Khrustalev, M. V. Chichikina, “Bogoliubov group variables in the relativistic quantum field theory”, Theoret. and Math. Phys., 111:2 (1997), 583–591  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. V. Shurgaya, “The method of collective variables in relativistic theory”, Theoret. and Math. Phys., 57:3 (1983), 1216–1225  mathnet  crossref  isi
    3. A. V. Razumov, A. Yu. Taranov, “Collective coordinates on symplectic manifolds”, Theoret. and Math. Phys., 52:1 (1982), 641–647  mathnet  crossref  mathscinet  zmath  isi
    4. A. V. Shurgaya, “The method of collective variables and the generalized Hamiltonian formalism”, Theoret. and Math. Phys., 45:1 (1980), 873–879  mathnet  crossref  mathscinet  isi
    5. Sh. I. Vashakidze, V. A. Matveev, “Bogolyubov transformation in the problem of capture of a massive particle by a quantum field”, Theoret. and Math. Phys., 45:3 (1980), 1069–1077  mathnet  crossref  mathscinet  isi
    6. O.A. Khrustalev, A.V. Razumov, A.Yu. Taranov, “Collective coordinate method in the canonical formalism: Bogolubov's transformation”, Nuclear Physics B, 172 (1980), 44  crossref
    7. A. V. Razumov, A. Yu. Taranov, “Scattering on a nonrelativistic particle in strong-coupling theory”, Theoret. and Math. Phys., 35:3 (1978), 480–487  mathnet  crossref  mathscinet
    8. A. V. Razumov, O. A. Khrustalev, “Application of Bogolyubov's method to quantization of boson fields in the neighborhood of a classical solution”, Theoret. and Math. Phys., 29:3 (1976), 1084–1090  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :96
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025