Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1974, Volume 18, Number 2, Pages 233–242 (Mi tmf3536)  

This article is cited in 12 scientific papers (total in 12 papers)

Spectral theory of Kirkwood–Salzburg equations in a finite volume

L. A. Pastur
References:
Abstract: The system of Kirkwood–Salzburg equations are studied for continuous and lattice systems in a finite volume. It is shown that the operator defined by this system of equations has a spectrum, when appropriately understood, that coincides with the set of numbers $\{z_i^{-1}\}$, $i=1,2,\dots$, where $z_i$ are the zeros of the partition function of the physical system under conside ration.
Received: 12.01.1973
English version:
Theoretical and Mathematical Physics, 1974, Volume 18, Issue 2, Pages 165–171
DOI: https://doi.org/10.1007/BF01035916
Bibliographic databases:
Language: Russian
Citation: L. A. Pastur, “Spectral theory of Kirkwood–Salzburg equations in a finite volume”, TMF, 18:2 (1974), 233–242; Theoret. and Math. Phys., 18:2 (1974), 165–171
Citation in format AMSBIB
\Bibitem{Pas74}
\by L.~A.~Pastur
\paper Spectral theory of Kirkwood--Salzburg equations in a~finite volume
\jour TMF
\yr 1974
\vol 18
\issue 2
\pages 233--242
\mathnet{http://mi.mathnet.ru/tmf3536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468995}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 18
\issue 2
\pages 165--171
\crossref{https://doi.org/10.1007/BF01035916}
Linking options:
  • https://www.mathnet.ru/eng/tmf3536
  • https://www.mathnet.ru/eng/tmf/v18/i2/p233
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :137
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024