Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1974, Volume 18, Number 2, Pages 181–189 (Mi tmf3530)  

This article is cited in 12 scientific papers (total in 12 papers)

Method of summing the perturbation series in scalar theories

A. G. Basuev, A. N. Vasil'ev

Leningrad State University
References:
Abstract: Taking as an example connected vacuum loops of the theory $-\lambda\varphi^4$, we consider a method of summing the perturbation series in which the number of graphs is allowed for exactly and the departure of the mean value of a graph from a purely power law is simulated by the substitution $\lambda\to\lambda e^{it}$ heit and subsequent averaging over $t$ with a weight $f(t)$ (the function $f$ remains unknown). The resulting expression is analytic in some sector, including the half-axis $\lambda>0$. At the point $\lambda=0$ there is an essential singularity generated by the concentric cuts that accumulate at the point $\lambda=0$ (the cuts are not included in the analyticity sector).
Received: 19.02.1973
English version:
Theoretical and Mathematical Physics, 1974, Volume 18, Issue 2, Pages 129–135
DOI: https://doi.org/10.1007/BF01035911
Bibliographic databases:
Language: Russian
Citation: A. G. Basuev, A. N. Vasil'ev, “Method of summing the perturbation series in scalar theories”, TMF, 18:2 (1974), 181–189; Theoret. and Math. Phys., 18:2 (1974), 129–135
Citation in format AMSBIB
\Bibitem{BasVas74}
\by A.~G.~Basuev, A.~N.~Vasil'ev
\paper Method of summing the perturbation series in scalar theories
\jour TMF
\yr 1974
\vol 18
\issue 2
\pages 181--189
\mathnet{http://mi.mathnet.ru/tmf3530}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468824}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 18
\issue 2
\pages 129--135
\crossref{https://doi.org/10.1007/BF01035911}
Linking options:
  • https://www.mathnet.ru/eng/tmf3530
  • https://www.mathnet.ru/eng/tmf/v18/i2/p181
  • This publication is cited in the following 12 articles:
    1. Guskov V.A., Ivanov M.G., Ogarkov S.L., “A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory”, Phys. Part. Nuclei, 52:3 (2021), 420–437  crossref  isi
    2. A. L. Kataev, V. S. Molokoedov, “Least squares method: Application to analysis of the flavor dependence of the QCD relation between pole and scheme running heavy quark masses”, Theoret. and Math. Phys., 200:3 (2019), 1374–1382  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Ivan Chebotarev, Vladislav Guskov, Stanislav Ogarkov, Matthew Bernard, “S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation”, Particles, 2:1 (2019), 103  crossref
    4. N. V. Antonov, M. V. Kompaniets, N. M. Lebedev, “Critical behavior of the $O(n)$ $\phi^4$ model with an antisymmetric tensor order parameter: Three-loop approximation”, Theoret. and Math. Phys., 190:2 (2017), 204–216  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. I. M. Suslov, “Renormalization group functions of the φ4 theory in the strong coupling limit: Analytical results”, J. Exp. Theor. Phys., 107:3 (2008), 413  crossref
    6. I. M. Suslov, “Localization theory in zero dimension and the structure of the diffusion poles”, J. Exp. Theor. Phys., 105:6 (2007), 1198  crossref
    7. L. G. Molinari, N. Manini, “Enumeration of many-body skeleton diagrams”, Eur. Phys. J. B, 51:3 (2006), 331  crossref
    8. A.P. Bukhvostov, L.N. Lipatov, Current Physics–Sources and Comments, 7, Large-Order Behaviour of Perturbation Theory, 1990, 309  crossref
    9. L.N. Lipatov, Current Physics–Sources and Comments, 7, Large-Order Behaviour of Perturbation Theory, 1990, 83  crossref
    10. V. A. Malyshev, “Estimates of the coefficients of mayer expansions on the boundary of the infrared region”, Theoret. and Math. Phys., 45:2 (1980), 999–1005  mathnet  crossref  mathscinet  isi
    11. F. M. Dittes, Yu. A. Kubyshin, O. V. Tarasov, “Four-loop approximation in the $\varphi^4$ model”, Theoret. and Math. Phys., 37:1 (1978), 879–884  mathnet  crossref  mathscinet
    12. V. A. Malyshev, “Probabilistic aspects of quantum field theory”, J. Soviet Math., 13:4 (1980), 479–505  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:450
    Full-text PDF :147
    References:85
    First page:4
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025