Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 132, Number 1, Pages 141–149
DOI: https://doi.org/10.4213/tmf352
(Mi tmf352)
 

A Step-Function Approximation in the Theory of Critical Fluctuations

P. L. Rubin

P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: We consider fluctuations near the critical point using the step-function approximation, i.e. the approximation of the order parameter field $f(x)$ by a sequence of step functions converging to $f(x)$. We show that the systematic application of this method leads to a trivial result in the case where the fluctuation probability is defined by the Landau Hamiltonian: the fluctuations disappear because the measure in the space of functions that describe the fluctuations proves to be supported on the single function $f\equiv 0$. This can imply that the approximation of the initial smooth functions by the step functions fails as a method for evaluating the functional integral and for defining the corresponding measure, although the step-function approximation proves to be effective in the Gaussian case and yields the same result as alternative methods do.
Keywords: critical fluctuations, non-Gaussian functional integral, Landau Hamiltonian, step-function approximation.
Received: 15.11.2001
Revised: 26.02.2002
English version:
Theoretical and Mathematical Physics, 2002, Volume 132, Issue 1, Pages 1012–1018
DOI: https://doi.org/10.1023/A:1019671727381
Bibliographic databases:
Language: Russian
Citation: P. L. Rubin, “A Step-Function Approximation in the Theory of Critical Fluctuations”, TMF, 132:1 (2002), 141–149; Theoret. and Math. Phys., 132:1 (2002), 1012–1018
Citation in format AMSBIB
\Bibitem{Rub02}
\by P.~L.~Rubin
\paper A~Step-Function Approximation in the Theory of Critical Fluctuations
\jour TMF
\yr 2002
\vol 132
\issue 1
\pages 141--149
\mathnet{http://mi.mathnet.ru/tmf352}
\crossref{https://doi.org/10.4213/tmf352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1956683}
\zmath{https://zbmath.org/?q=an:1066.81586}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 132
\issue 1
\pages 1012--1018
\crossref{https://doi.org/10.1023/A:1019671727381}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000177713500009}
Linking options:
  • https://www.mathnet.ru/eng/tmf352
  • https://doi.org/10.4213/tmf352
  • https://www.mathnet.ru/eng/tmf/v132/i1/p141
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:427
    Full-text PDF :188
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024