Abstract:
We construct integrable bi-Hamiltonian hierarchies related to compatible nonlocal Poisson brackets of hydrodynamic type and solve the problem of the canonical form for a pair of compatible nonlocal Poisson brackets of hydrodynamic type. A system of equations describing compatible nonlocal Poisson brackets of hydrodynamic type is derived. This system can be integrated by the inverse scattering problem method. Any solution of this integrable system generates integrable bi-Hamiltonian systems of hydrodynamic type according to explicit formulas. We construct a theory of Poisson brackets of the special Liouville type. This theory plays an important role in the construction of integrable hierarchies.
Keywords:
compatible Poisson brackets, systems of hydrodynamic type, compatible metrics, integrable hierarchies, bi-Hamiltonian structures, nonlocal Poisson brackets of hydrodynamic type.
Citation:
O. I. Mokhov, “Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them”, TMF, 132:1 (2002), 60–73; Theoret. and Math. Phys., 132:1 (2002), 942–954
\Bibitem{Mok02}
\by O.~I.~Mokhov
\paper Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them
\jour TMF
\yr 2002
\vol 132
\issue 1
\pages 60--73
\mathnet{http://mi.mathnet.ru/tmf346}
\crossref{https://doi.org/10.4213/tmf346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1956677}
\zmath{https://zbmath.org/?q=an:1067.37099}
\elib{https://elibrary.ru/item.asp?id=13401722}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 132
\issue 1
\pages 942--954
\crossref{https://doi.org/10.1023/A:1019659324655}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000177713500003}
Linking options:
https://www.mathnet.ru/eng/tmf346
https://doi.org/10.4213/tmf346
https://www.mathnet.ru/eng/tmf/v132/i1/p60
This publication is cited in the following 6 articles:
O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937
O. I. Mokhov, “Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type”, Theoret. and Math. Phys., 167:1 (2011), 403–420
Pavlov, MV, “Algebro-geometric approach in the theory of integrable hydrodynamic type systems”, Communications in Mathematical Physics, 272:2 (2007), 469
Artur Sergyeyev, “Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility”, SIGMA, 3 (2007), 062, 14 pp.
Pavlov, MV, “Hydrodynamic chains and the classification of their Poisson brackets”, Journal of Mathematical Physics, 47:12 (2006), 123514
O. I. Mokhov, “Lax Pairs for Equations Describing Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Reductions of the Lamй Equations”, Theoret. and Math. Phys., 138:2 (2004), 238–249