Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1971, Volume 6, Number 2, Pages 194–212 (Mi tmf3417)  

This article is cited in 124 scientific papers (total in 124 papers)

Non-Wiener functional integrals

F. A. Berezin
References:
Abstract: A study is made of Feynman path integrals and some similar integrals which are used to solve the initial-value problem for the Schrödinger equation. The S matrix and the partition function are found. The relationship between these integrals and operator symbols is found. In particular, it is shown that functional integrals of this kind depend strongly on the adopted approximations of finite multiplicity. The relation between the Feynman integral and the Wick formula is discussed.
Received: 19.05.1970
English version:
Theoretical and Mathematical Physics, 1971, Volume 6, Issue 2, Pages 141–155
DOI: https://doi.org/10.1007/BF01036576
Bibliographic databases:
Language: Russian
Citation: F. A. Berezin, “Non-Wiener functional integrals”, TMF, 6:2 (1971), 194–212; Theoret. and Math. Phys., 6:2 (1971), 141–155
Citation in format AMSBIB
\Bibitem{Ber71}
\by F.~A.~Berezin
\paper Non-Wiener functional integrals
\jour TMF
\yr 1971
\vol 6
\issue 2
\pages 194--212
\mathnet{http://mi.mathnet.ru/tmf3417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=479157}
\zmath{https://zbmath.org/?q=an:0207.11603}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 6
\issue 2
\pages 141--155
\crossref{https://doi.org/10.1007/BF01036576}
Linking options:
  • https://www.mathnet.ru/eng/tmf3417
  • https://www.mathnet.ru/eng/tmf/v6/i2/p194
  • This publication is cited in the following 124 articles:
    1. S. V. Dzhenzher, V. Zh. Sakbaev, “Quantum Law of Large Numbers for Banach Spaces”, Lobachevskii J Math, 45:6 (2024), 2485  crossref
    2. D. Bonocore, A. Kulesza, J. Pirsch, “Classical and quantum gravitational scattering with Generalized Wilson Lines”, J. High Energ. Phys., 2022:3 (2022)  crossref
    3. F. S. Dzheparov, A. D. Gulko, N. O. Elyutin, D. V. Lvov, V. E. Shestopal, “Neutron physics investigations of fundamental processes of statistical mechanics”, Int. J. Mod. Phys. A, 37:20n21 (2022)  crossref
    4. Borisov L.A., Orlov Y.N., “Generalized Evolution Equation of Wigner Function For An Arbitrary Linear Quantization”, Lobachevskii J. Math., 42:1 (2021), 63–69  crossref  isi
    5. L. A. Borisov, Yu. N. Orlov, “On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function”, Proc. Steklov Inst. Math., 313 (2021), 17–26  mathnet  crossref  crossref  isi  elib
    6. J. E. Gough, Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Random quantization of Hamiltonian systems”, Dokl. Math., 103:3 (2021), 122–126  mathnet  crossref  crossref  zmath  elib
    7. Orlov Yu.N., Sakbaev V.Zh., Shmidt E.V., “Operator Approach to Weak Convergence of Measures and Limit Theorems For Random Operators”, Lobachevskii J. Math., 42:10, SI (2021), 2413–2426  crossref  isi
    8. Borisov L.A., Orlov Yu.N., “On the Generalization of Moyal Equation For An Arbitrary Linear Quantization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 24:1 (2021), 2150003  crossref  isi
    9. Lasha Berezhiani, Michael Zantedeschi, “Evolution of coherent states as quantum counterpart of classical dynamics”, Phys. Rev. D, 104:8 (2021)  crossref
    10. Yu. N. Orlov, “Uravnenie evolyutsii funktsii Vignera dlya lineinykh kvantovanii”, Preprinty IPM im. M. V. Keldysha, 2020, 040, 22 pp.  mathnet  crossref
    11. Yana A. Butko, Springer Proceedings in Mathematics & Statistics, 325, Semigroups of Operators – Theory and Applications, 2020, 19  crossref
    12. Evgenii Kochetov, “Comment on “Coherent-state path integrals in the continuum””, Phys. Rev. A, 99:2 (2019)  crossref
    13. Borisov L.A., Orlov Yu.N., Sakbaev V.Zh., “Feynman Averaging of Semigroups Generated By Schrodinger Operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:2 (2018), 1850010  crossref  isi
    14. Yu. N. Orlov, V. Zh. Sakbaev, “Feynman–Chernoff iterations and their applications in quantum dynamics”, Proc. Steklov Inst. Math., 301 (2018), 197–206  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    15. J. L. M. Assirati, D. M. Gitman, “Covariant quantizations in plane and curved spaces”, Eur. Phys. J. C, 77:7 (2017)  crossref
    16. Fiorenzo Bastianelli, Olindo Corradini, Edoardo Vassura, “Quantum mechanical path integrals in curved spaces and the type-A trace anomaly”, J. High Energ. Phys., 2017:4 (2017)  crossref
    17. Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Butko Ya.A., Grothaus M., Smolyanov O.G., “Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions”, J. Math. Phys., 57:2 (2016), 023508  crossref  mathscinet  zmath  isi  elib  scopus
    19. L. A. Borisov, Yu. N. Orlov, “Analyzing the dependence of finite-fold approximations of the harmonic oscillator equilibrium density matrix and of the Wigner function on the quantization prescription”, Theoret. and Math. Phys., 184:1 (2015), 986–995  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    20. L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha, 2015, 057, 23 pp.  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:931
    Full-text PDF :462
    References:71
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025