Abstract:
We construct a supersymmetric analogue of the Calogero operator SL which depends on the parameter k. This analogue is related to the root system of the Lie superalgebra gl(n|m). It becomes the standard Calogero operator for m=0 and becomes the operator constructed by Veselov, Chalykh, and Feigin up to changing the variables and the parameter k for m=1. For k=1 and 1/2, the operator SL is the radial part of the second-order Laplace operator for the symmetric superspaces corresponding to the respective pairs (gl⊕gl,gl), (gl,osp).
We show that for any m and n, the supersymmetric analogues of the Jack polynomials constructed by Kerov, Okounkov, and Olshanskii are eigenfunctions of the operator SL. For k=1 and 1/2, the supersymmetric analogues of the Jack polynomials coincide with the spherical functions on the above superspaces. We also study the algebraic analogue of the Berezin integral.
This publication is cited in the following 24 articles:
Martin Hallnäs, “New Orthogonality Relations for Super-Jack Polynomials and an Associated Lassalle–Nekrasov Correspondence”, Constr Approx, 59:1 (2024), 113
Taro Kimura, Go Noshita, “Gauge origami and quiver W-algebras”, J. High Energ. Phys., 2024:5 (2024)
Fu-Hao Zhang, Fan Liu, Yue Li, Chun-Hong Zhang, “On higher deformed Calogero–Sutherland Hamiltonians”, Journal of Mathematical Physics, 65:10 (2024)
Farrokh Atai, Masatoshi Noumi, “Eigenfunctions of the van Diejen model generated by gauge and integral transformations”, Advances in Mathematics, 412 (2023), 108816
Taro Kimura, “Aspects of supergroup gauge theory”, Int. J. Mod. Phys. A, 38:03 (2023)
Hallnas M., Langmann E., Noumi M., Rosengren H., “From Kajihara'S Transformation Formula to Deformed Macdonald-Ruijsenaars and Noumi-Sano Operators”, Sel. Math.-New Ser., 28:2 (2022), 24
Atai F., Hallnas M., Langmann E., “Orthogonality of Super-Jack Polynomials and a Hilbert Space Interpretation of Deformed Calogero-Moser-Sutherland Operators”, Bull. London Math. Soc., 51:2 (2019), 353–370
Fedoruk S. Ivanov E. Lechtenfeld O., “Supersymmetric Hyperbolic Calogero-Sutherland Models By Gauging”, Nucl. Phys. B, 944 (2019), 114613
Feigin M. Vrabec M., “Intertwining Operator For Ag(2) Calogero-Moser-Sutherland System”, J. Math. Phys., 60:7 (2019), 073503
Farrokh Atai, Edwin Langmann, “Series Solutions of the Non-Stationary Heun Equation”, SIGMA, 14 (2018), 011, 32 pp.
Atai F., Langmann E., “Deformed Calogero-Sutherland model and fractional quantum Hall effect”, J. Math. Phys., 58:1 (2017), 011902
A. N. Sergeev, “Lie superalgebras and Calogero–Moser–Sutherland systems”, J. Math. Sci. (N. Y.), 235:6 (2018), 756–787
Atai F. Hallnaes M. Langmann E., “Source Identities and Kernel Functions For Deformed (Quantum) Ruijsenaars Models”, Lett. Math. Phys., 104:7 (2014), 811–835
Alexander Karabegov, Yuri Neretin, Theodore Voronov, Geometric Methods in Physics, 2013, 3
Langmann E., Takemura K., “Source Identity and Kernel Functions for Inozemtsev-Type Systems”, J. Math. Phys., 53:8 (2012), 082105
Feigin M., “Generalized Calogero–Moser Systems From Rational Cherednik Algebras”, Sel. Math.-New Ser., 18:1 (2012), 253–281