Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 131, Number 3, Pages 355–376
DOI: https://doi.org/10.4213/tmf334
(Mi tmf334)
 

This article is cited in 24 scientific papers (total in 24 papers)

Calogero Operator and Lie Superalgebras

A. N. Sergeev

Balakovo Institute of Technique, Technology and Control
References:
Abstract: We construct a supersymmetric analogue of the Calogero operator SL which depends on the parameter k. This analogue is related to the root system of the Lie superalgebra gl(n|m). It becomes the standard Calogero operator for m=0 and becomes the operator constructed by Veselov, Chalykh, and Feigin up to changing the variables and the parameter k for m=1. For k=1 and 1/2, the operator SL is the radial part of the second-order Laplace operator for the symmetric superspaces corresponding to the respective pairs (glgl,gl), (gl,osp). We show that for any m and n, the supersymmetric analogues of the Jack polynomials constructed by Kerov, Okounkov, and Olshanskii are eigenfunctions of the operator SL. For k=1 and 1/2, the supersymmetric analogues of the Jack polynomials coincide with the spherical functions on the above superspaces. We also study the algebraic analogue of the Berezin integral.
Received: 19.12.2001
English version:
Theoretical and Mathematical Physics, 2002, Volume 131, Issue 3, Pages 747–764
DOI: https://doi.org/10.1023/A:1015968505753
Bibliographic databases:
Language: Russian
Citation: A. N. Sergeev, “Calogero Operator and Lie Superalgebras”, TMF, 131:3 (2002), 355–376; Theoret. and Math. Phys., 131:3 (2002), 747–764
Citation in format AMSBIB
\Bibitem{Ser02}
\by A.~N.~Sergeev
\paper Calogero Operator and Lie Superalgebras
\jour TMF
\yr 2002
\vol 131
\issue 3
\pages 355--376
\mathnet{http://mi.mathnet.ru/tmf334}
\crossref{https://doi.org/10.4213/tmf334}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931149}
\zmath{https://zbmath.org/?q=an:1039.81028}
\elib{https://elibrary.ru/item.asp?id=13395460}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 131
\issue 3
\pages 747--764
\crossref{https://doi.org/10.1023/A:1015968505753}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176741900001}
Linking options:
  • https://www.mathnet.ru/eng/tmf334
  • https://doi.org/10.4213/tmf334
  • https://www.mathnet.ru/eng/tmf/v131/i3/p355
  • This publication is cited in the following 24 articles:
    1. Martin Hallnäs, “New Orthogonality Relations for Super-Jack Polynomials and an Associated Lassalle–Nekrasov Correspondence”, Constr Approx, 59:1 (2024), 113  crossref
    2. Taro Kimura, Go Noshita, “Gauge origami and quiver W-algebras”, J. High Energ. Phys., 2024:5 (2024)  crossref
    3. Fu-Hao Zhang, Fan Liu, Yue Li, Chun-Hong Zhang, “On higher deformed Calogero–Sutherland Hamiltonians”, Journal of Mathematical Physics, 65:10 (2024)  crossref
    4. Farrokh Atai, Masatoshi Noumi, “Eigenfunctions of the van Diejen model generated by gauge and integral transformations”, Advances in Mathematics, 412 (2023), 108816  crossref
    5. Taro Kimura, “Aspects of supergroup gauge theory”, Int. J. Mod. Phys. A, 38:03 (2023)  crossref
    6. Hallnas M., Langmann E., Noumi M., Rosengren H., “From Kajihara'S Transformation Formula to Deformed Macdonald-Ruijsenaars and Noumi-Sano Operators”, Sel. Math.-New Ser., 28:2 (2022), 24  crossref  mathscinet  isi  scopus
    7. Fedoruk S., “N=2 Supersymmetric Hyperbolic Calogero-Sutherland Model”, Nucl. Phys. B, 953 (2020), 114977  crossref  mathscinet  isi  scopus
    8. Atai F., “Source Identities and Kernel Functions For the Deformed Koornwinder-Van Diejen Models”, Commun. Math. Phys., 377:3 (2020), 2191–2216  crossref  mathscinet  isi  scopus
    9. Fedoruk S., “N=4 Supersymmetric U(2)-Spin Hyperbolic Calogero-Sutherland Model”, Nucl. Phys. B, 961 (2020), 115234  crossref  mathscinet  isi  scopus
    10. Atai F., Hallnas M., Langmann E., “Orthogonality of Super-Jack Polynomials and a Hilbert Space Interpretation of Deformed Calogero-Moser-Sutherland Operators”, Bull. London Math. Soc., 51:2 (2019), 353–370  crossref  mathscinet  isi  scopus
    11. Fedoruk S. Ivanov E. Lechtenfeld O., “Supersymmetric Hyperbolic Calogero-Sutherland Models By Gauging”, Nucl. Phys. B, 944 (2019), 114613  crossref  mathscinet  isi  scopus
    12. Feigin M. Vrabec M., “Intertwining Operator For Ag(2) Calogero-Moser-Sutherland System”, J. Math. Phys., 60:7 (2019), 073503  crossref  mathscinet  isi  scopus
    13. Farrokh Atai, Edwin Langmann, “Series Solutions of the Non-Stationary Heun Equation”, SIGMA, 14 (2018), 011, 32 pp.  mathnet  crossref
    14. Atai F., Langmann E., “Deformed Calogero-Sutherland model and fractional quantum Hall effect”, J. Math. Phys., 58:1 (2017), 011902  crossref  mathscinet  zmath  isi  scopus
    15. Sergeev A.N., Veselov A.P., “Symmetric Lie Superalgebras and Deformed Quantum Calogero–Moser Problems”, Adv. Math., 304 (2017), 728–768  crossref  mathscinet  zmath  isi  scopus
    16. A. N. Sergeev, “Lie superalgebras and Calogero–Moser–Sutherland systems”, J. Math. Sci. (N. Y.), 235:6 (2018), 756–787  mathnet  mathnet  crossref
    17. Atai F. Hallnaes M. Langmann E., “Source Identities and Kernel Functions For Deformed (Quantum) Ruijsenaars Models”, Lett. Math. Phys., 104:7 (2014), 811–835  crossref  mathscinet  zmath  adsnasa  isi  scopus
    18. Alexander Karabegov, Yuri Neretin, Theodore Voronov, Geometric Methods in Physics, 2013, 3  crossref
    19. Langmann E., Takemura K., “Source Identity and Kernel Functions for Inozemtsev-Type Systems”, J. Math. Phys., 53:8 (2012), 082105  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    20. Feigin M., “Generalized Calogero–Moser Systems From Rational Cherednik Algebras”, Sel. Math.-New Ser., 18:1 (2012), 253–281  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :270
    References:91
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025