Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 27, Number 3, Pages 283–287 (Mi tmf3330)  

This article is cited in 13 scientific papers (total in 13 papers)

Generalization of the inverse scattering problem method

V. E. Zakharov, S. V. Manakov
References:
Abstract: It is shown that every one-dimensional differential operator whose coefficient functions depend on an arbitrary set of parameters is associated with a series of multidimensional nonlinear partial differential equations which can be integrated by means of the inverse scattering problem method.
Received: 29.01.1976
English version:
Theoretical and Mathematical Physics, 1976, Volume 27, Issue 3, Pages 485–487
DOI: https://doi.org/10.1007/BF01028614
Bibliographic databases:
Language: Russian
Citation: V. E. Zakharov, S. V. Manakov, “Generalization of the inverse scattering problem method”, TMF, 27:3 (1976), 283–287; Theoret. and Math. Phys., 27:3 (1976), 485–487
Citation in format AMSBIB
\Bibitem{ZakMan76}
\by V.~E.~Zakharov, S.~V.~Manakov
\paper Generalization of the inverse scattering problem method
\jour TMF
\yr 1976
\vol 27
\issue 3
\pages 283--287
\mathnet{http://mi.mathnet.ru/tmf3330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=457963}
\zmath{https://zbmath.org/?q=an:0334.47005}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 27
\issue 3
\pages 485--487
\crossref{https://doi.org/10.1007/BF01028614}
Linking options:
  • https://www.mathnet.ru/eng/tmf3330
  • https://www.mathnet.ru/eng/tmf/v27/i3/p283
  • This publication is cited in the following 13 articles:
    1. A. M. Samoilenko, Ya. A. Prykarpatsky, D. Blackmore, A. K. Prykarpatsky, “Theory of Multidimensional Delsarte–Lions Transmutation Operators. II”, Ukr Math J, 71:6 (2019), 921  crossref
    2. V. H. Samoilenko, Yu. I. Samoilenko, “Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg–de Vries equation with variable coefficients”, Ukr Math J, 64:7 (2012), 1109  crossref
    3. Sergeev, SM, “Supertetrahedra and superalgebras”, Journal of Mathematical Physics, 50:8 (2009), 083519  crossref  isi
    4. A.I. Zenchuk, “Combination of Inverse Spectral Transform Method and Method of Characteristics: Deformed Pohlmeyer Equation”, JNMP, 15:supplement 3 (2008), 437  crossref
    5. V. H. Samoilenko, Yu. I. Samoilenko, “Asymptotic solutions of the Cauchy problem for the singularly perturbed Korteweg-de Vries equation with variable coefficients”, Ukr Math J, 59:1 (2007), 126  crossref
    6. Zenchuk, AI, “Multidimensional hierarchies of (1+1)-dimensional integrable partial differential equations. Nonsymmetric partial derivative-dressing”, Journal of Mathematical Physics, 41:9 (2000), 6248  crossref  isi
    7. A.I. Zenchuk, “On the dressing method in multidimension”, Physics Letters A, 277:1 (2000), 25  crossref
    8. R.A. Kraenkel, M. Senthilvelan, A.I. Zenchuk, “Lie symmetry analysis and reductions of a two-dimensional integrable generalization of the Camassa–Holm equation”, Physics Letters A, 273:3 (2000), 183  crossref
    9. Marcus V Mesquita, Áurea R Vasconcellos, Roberto Luzzi, “Irreversible Processes in the Context of a Nonequilibrium Statistical Ensemble Formalism”, Phys. Scr., 59:4 (1999), 257  crossref
    10. V. K. Mel'nikov, “Conservation laws for a class of systems of nonlinear evolution equations”, Funct. Anal. Appl., 15:1 (1981), 33–47  mathnet  crossref  mathscinet  zmath  isi
    11. V. E. Zakharov, Topics in Current Physics, 17, Solitons, 1980, 243  crossref
    12. V. E. Zakharov, A. B. Shabat, “Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II”, Funct. Anal. Appl., 13:3 (1979), 166–174  mathnet  crossref  mathscinet  zmath
    13. J.L. Gervais, A. Neveu, M.A. Virasoro, “Non-classical configurations in Euclidean field theory as minima of constrained systems”, Nuclear Physics B, 138:1 (1978), 45  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:794
    Full-text PDF :323
    References:103
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025