Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 27, Number 2, Pages 267–269 (Mi tmf3326)  

This article is cited in 9 scientific papers (total in 9 papers)

Analytic solutions of the problem of scattering by potentials of the Eckart class

A. K. Zaichenko, V. S. Ol'khovskii
Full-text PDF (253 kB) Citations (9)
References:
Abstract: The radial wave functions of the continuum and the elements of the S matrix for s-wave scattering by the Eckart potential, the Saxon–Woods potential, and the optical potential are found.
Received: 07.01.1975
English version:
Theoretical and Mathematical Physics, 1976, Volume 27, Issue 2, Pages 475–477
DOI: https://doi.org/10.1007/BF01051241
Bibliographic databases:
Language: Russian
Citation: A. K. Zaichenko, V. S. Ol'khovskii, “Analytic solutions of the problem of scattering by potentials of the Eckart class”, TMF, 27:2 (1976), 267–269; Theoret. and Math. Phys., 27:2 (1976), 475–477
Citation in format AMSBIB
\Bibitem{ZaiOlk76}
\by A.~K.~Zaichenko, V.~S.~Ol'khovskii
\paper Analytic solutions of the problem of scattering by potentials of the Eckart class
\jour TMF
\yr 1976
\vol 27
\issue 2
\pages 267--269
\mathnet{http://mi.mathnet.ru/tmf3326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=452240}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 27
\issue 2
\pages 475--477
\crossref{https://doi.org/10.1007/BF01051241}
Linking options:
  • https://www.mathnet.ru/eng/tmf3326
  • https://www.mathnet.ru/eng/tmf/v27/i2/p267
  • This publication is cited in the following 9 articles:
    1. V. H. Badalov, B. Baris, K. Uzun, “Bound states of the D-dimensional Schrödinger equation for the generalized Woods–Saxon potential”, Mod. Phys. Lett. A, 34:14 (2019), 1950107  crossref
    2. B.C. Lütfüoğlu, “Surface interaction effects to a Klein–Gordon particle embedded in a Woods–Saxon potential well in terms of thermodynamic functions,”, Can. J. Phys., 96:7 (2018), 843  crossref
    3. B. C. Lütfüoğlu, “Comparative Effect of an Addition of a Surface Term to Woods-Saxon Potential on Thermodynamics of a Nucleon”, Commun. Theor. Phys., 69:1 (2018), 23  crossref
    4. B. C. Lütfüoğlu, F. Akdeniz, O. Bayrak, “Scattering, bound, and quasi-bound states of the generalized symmetric Woods-Saxon potential”, Journal of Mathematical Physics, 57:3 (2016)  crossref
    5. Bekir Can Lütfüoğlu, Muzaffer Erdoğan, “THERMODYNAMIC PROPERTIES OF A NUCLEON UNDER THE GENERALIZED SYMMETRIC WOODS-SAXON POTENTIAL IN FLOURINE 17 ISOTOPE”, ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A - Applied Sciences and Engineering, 17:AFG5 SPECIAL ISSUE (2016), 708  crossref
    6. O Bayrak, E Aciksoz, “Corrected analytical solution of the generalized Woods–Saxon potential for arbitrary $\ell $ states”, Phys. Scr., 90:1 (2015), 015302  crossref
    7. O. Bayrak, D. Sahin, “Exact Analytical Solution of the Klein–Gordon Equation in the Generalized Woods–Saxon Potential”, Commun. Theor. Phys., 64:3 (2015), 259  crossref
    8. G. A. Natanzon, “General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions”, Theoret. and Math. Phys., 38:2 (1979), 146–153  mathnet  crossref  mathscinet  zmath
    9. G. A. Natanzon, “Construction of the jost function and of the S-matrix for a general potential allowing solution of the Schr�dinger equation in terms of hypergeometric functions”, Soviet Physics Journal, 21:7 (1978), 855  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :135
    References:60
    First page:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025