Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 27, Number 2, Pages 254–261 (Mi tmf3324)  

This article is cited in 19 scientific papers (total in 19 papers)

Statistics of molecular excitons and magnons at high concentrations

I. G. Kaplan
References:
Abstract: Exact commutation relations are obtained for the operators of quasiparticles in a periodic lattice (Frenkel' excitons, magnons). The commutation relations are trilinear in the operators of creation and annihilation of quasipartieles and contain a conservation law of the quasimomentum. The statistical properties of the quasiparticles are described by modified parastatistics of rank N (N is the number of sites of the lattice in the delocalization region of the excitation). It is shown that a gas of quasiparticles satisfying parastatistics is always nonideal since the corrections for the non-Bose nature of the quasiparticle operators are of the same order as the corrections for the nonideal behavior. The number of quasiparticles does not exceed the rank of the parastatistics describing them, which shows that there are no fundamental prohibitions of the phenomenon of Bose condensation. The commutation relations can be used to take into account exactly the kinematic interaction in any order in the dynamical interaction.
Received: 27.06.1975
English version:
Theoretical and Mathematical Physics, 1976, Volume 27, Issue 2, Pages 466–471
DOI: https://doi.org/10.1007/BF01051239
Language: Russian
Citation: I. G. Kaplan, “Statistics of molecular excitons and magnons at high concentrations”, TMF, 27:2 (1976), 254–261; Theoret. and Math. Phys., 27:2 (1976), 466–471
Citation in format AMSBIB
\Bibitem{Kap76}
\by I.~G.~Kaplan
\paper Statistics of molecular excitons and magnons at high concentrations
\jour TMF
\yr 1976
\vol 27
\issue 2
\pages 254--261
\mathnet{http://mi.mathnet.ru/tmf3324}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 27
\issue 2
\pages 466--471
\crossref{https://doi.org/10.1007/BF01051239}
Linking options:
  • https://www.mathnet.ru/eng/tmf3324
  • https://www.mathnet.ru/eng/tmf/v27/i2/p254
  • This publication is cited in the following 19 articles:
    1. Ronald Columbié-Leyva, Alberto López-Vivas, Jacques Soullard, Ulises Miranda, Ilya G. Kaplan, “Symmetry of Identical Particles, Modern Achievements in the Pauli Exclusion Principle, in Superconductivity and in Some Other Phenomena”, Symmetry, 15:3 (2023), 701  crossref
    2. Ilya G. Kaplan, “Modern State of the Pauli Exclusion Principle and the Problems of Its Theoretical Foundation”, Symmetry, 13:1 (2020), 21  crossref
    3. I. G. Kaplan, “The Pauli Exclusion Principle and the Problems of its Theoretical Substantiation1”, Russ Phys J, 63:8 (2020), 1305  crossref
    4. The Pauli Exclusion Principle, 2016, 1  crossref
    5. The Pauli Exclusion Principle, 2016, 106  crossref
    6. I. G. Kaplan, “The Pauli Exclusion Principle. Can It Be Proved?”, Found Phys, 43:10 (2013), 1233  crossref
    7. I. G. Kaplan, Fundamental World of Quantum Chemistry, 2003, 183  crossref
    8. I. G. Kaplan, “Is the Pauli exclusive principle an independent quantum mechanical postulate?”, Int J of Quantum Chemistry, 89:4 (2002), 268  crossref
    9. I.G. Kaplan, O. Navarro, “Statistics and properties of coupled hole pairs in superconducting ceramics”, Physica C: Superconductivity, 341-348 (2000), 217  crossref
    10. O. Navarro, I.G. Kaplan, “Theoretical Study of Hole-Pair System in a Periodical Lattice”, phys. stat. sol. (b), 220:1 (2000), 493  crossref
    11. H.O. Frota, F.S. de Aguiar, “Statistical mechanics of relativistic anyons”, Physica A: Statistical Mechanics and its Applications, 269:2-4 (1999), 418  crossref
    12. I G Kaplan, O Navarro, “Charge transfer and the statistics of holons in a periodical lattice”, J. Phys.: Condens. Matter, 11:32 (1999), 6187  crossref
    13. Ilya G. Kaplan, “Exclusion principle and indistinguishability of identical particles in quantum mechanics”, Journal of Molecular Structure, 272 (1992), 187  crossref
    14. H.O. Frota, A.C.R. Bittencourt, “The magnetized d-dimensional ideal paragas”, Physica A: Statistical Mechanics and its Applications, 160:3 (1989), 386  crossref
    15. Nguyen Ba An, “Exciton Nonequilibrium Steady States in Laser‐Excited Molecular Crystals”, Physica Status Solidi (b), 150:2 (1988), 845  crossref
    16. M. C. de Sousa Vieira, C. Tsallis, “D-Dimensional ideal gas in parastatistics: Thermodynamic properties”, J Stat Phys, 48:1-2 (1987), 97  crossref
    17. A. Yu. Gaevskii, I. G. Kaplan, M. A. Puvinskii, “Density-density correlation function of a system of molecular excitons”, Theoret. and Math. Phys., 48:1 (1981), 653–658  mathnet  crossref  isi
    18. D. Bonchev, “Information theory interpretation of the Pauli principle and Hund rule”, Int J of Quantum Chemistry, 19:4 (1981), 673  crossref
    19. Eugene S. Kryachko, “Constructive approach to symmetrized two-particle expansions”, Reports on Mathematical Physics, 18:1 (1980), 67  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :135
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025