Abstract:
A study is made of the most general linear transformations of the density matrices of a quantum system that preserve the total probability and do not generate negative probabilities. The general form of such transformations is found in the case of a two-dimensional state space. It is shown that if the state space has more than six dimensions, this form loses its generality. Individual properties of dynamical transformations in the infinite–dimensional case are described.
Citation:
V. A. Franke, “On the general form of the dynamical transformation of density matrices”, TMF, 27:2 (1976), 172–183; Theoret. and Math. Phys., 27:2 (1976), 406–413
\Bibitem{Fra76}
\by V.~A.~Franke
\paper On~the general form of the dynamical transformation of density matrices
\jour TMF
\yr 1976
\vol 27
\issue 2
\pages 172--183
\mathnet{http://mi.mathnet.ru/tmf3315}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=503315}
\zmath{https://zbmath.org/?q=an:0355.60070}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 27
\issue 2
\pages 406--413
\crossref{https://doi.org/10.1007/BF01051230}
Linking options:
https://www.mathnet.ru/eng/tmf3315
https://www.mathnet.ru/eng/tmf/v27/i2/p172
This publication is cited in the following 16 articles:
A.A. Andrianov, A.A. Mikheeva, “The standard block RG and DMRG for open systems”, Physics Letters A, 516 (2024), 129641
Krzysztof Szczygielski, “D-divisible quantum evolution families”, J. Phys. A: Math. Theor., 56:48 (2023), 485202
A. S. Trushechkin, M. Merkli, J. D. Cresser, J. Anders, “Open quantum system dynamics and the mean force Gibbs state”, AVS Quantum Sci., 4 (2022), 12301–23
G. M. Timofeev, A. S. Trushechkin, “Hamiltonian of mean force in the weak-coupling and high-temperature approximations and refined quantum master equations”, Int. J. Mod. Phys. A, 37:20 (2022), 2243021–24
Artur Czerwinski, “Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond”, Symmetry, 14:8 (2022), 1752
Lajos Diósi, “Is there a relativistic Gorini-Kossakowski-Lindblad-Sudarshan master equation?”, Phys. Rev. D, 106:5 (2022)
Anton Trushechkin, “Quantum master equations and steady states for the ultrastrong-coupling limit and the strong-decoherence limit”, Phys. Rev. A, 106:4 (2022), 42209–20
Alexander A. Andrianov, Mikhail V. Ioffe, Ekaterina A. Izotova, Oleg O. Novikov, “The Franke–Gorini–Kossakowski–Lindblad–Sudarshan (FGKLS) Equation for Two-Dimensional Systems”, Symmetry, 14:4 (2022), 754
Simon Milz, Kavan Modi, “Quantum Stochastic Processes and Quantum non-Markovian Phenomena”, PRX Quantum, 2:3 (2021)
Tommy Ohlsson, Shun Zhou, “Density-matrix formalism for
PT
-symmetric non-Hermitian Hamiltonians with the Lindblad equation”, Phys. Rev. A, 103:2 (2021)
Philip Taranto, “Memory effects in quantum processes”, Int. J. Quantum Inform., 18:02 (2020), 1941002
Dario De Santis, Markus Johansson, Bogna Bylicka, Nadja K. Bernardes, Antonio Acín, “Witnessing non-Markovian dynamics through correlations”, Phys. Rev. A, 102:1 (2020)
A. A. Andrianov, M. V. Ioffe, E. A. Izotova, O. O. Novikov, “A perturbation algorithm for the pointers of Franke–Gorini–Kossakowski–Lindblad–Sudarshan equation”, Eur. Phys. J. Plus, 135:6 (2020)
A A Andrianov, M V Ioffe, O O Novikov, “Supersymmetrization of the Franke–Gorini–Kossakowski–Lindblad–Sudarshan equation”, J. Phys. A: Math. Theor., 52:42 (2019), 425301
M. A. Kurkov, V. A. Franke, “Local Fields Without Restrictions on the Spectrum of 4-Momentum Operator and Relativistic Lindblad Equation”, Found Phys, 41:5 (2011), 820