Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 27, Number 2, Pages 172–183 (Mi tmf3315)  

This article is cited in 16 scientific papers (total in 16 papers)

On the general form of the dynamical transformation of density matrices

V. A. Franke
References:
Abstract: A study is made of the most general linear transformations of the density matrices of a quantum system that preserve the total probability and do not generate negative probabilities. The general form of such transformations is found in the case of a two-dimensional state space. It is shown that if the state space has more than six dimensions, this form loses its generality. Individual properties of dynamical transformations in the infinite–dimensional case are described.
Received: 06.10.1975
English version:
Theoretical and Mathematical Physics, 1976, Volume 27, Issue 2, Pages 406–413
DOI: https://doi.org/10.1007/BF01051230
Bibliographic databases:
Language: Russian
Citation: V. A. Franke, “On the general form of the dynamical transformation of density matrices”, TMF, 27:2 (1976), 172–183; Theoret. and Math. Phys., 27:2 (1976), 406–413
Citation in format AMSBIB
\Bibitem{Fra76}
\by V.~A.~Franke
\paper On~the general form of the dynamical transformation of density matrices
\jour TMF
\yr 1976
\vol 27
\issue 2
\pages 172--183
\mathnet{http://mi.mathnet.ru/tmf3315}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=503315}
\zmath{https://zbmath.org/?q=an:0355.60070}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 27
\issue 2
\pages 406--413
\crossref{https://doi.org/10.1007/BF01051230}
Linking options:
  • https://www.mathnet.ru/eng/tmf3315
  • https://www.mathnet.ru/eng/tmf/v27/i2/p172
  • This publication is cited in the following 16 articles:
    1. A.A. Andrianov, A.A. Mikheeva, “The standard block RG and DMRG for open systems”, Physics Letters A, 516 (2024), 129641  crossref
    2. Krzysztof Szczygielski, “D-divisible quantum evolution families”, J. Phys. A: Math. Theor., 56:48 (2023), 485202  crossref
    3. A. S. Trushechkin, M. Merkli, J. D. Cresser, J. Anders, “Open quantum system dynamics and the mean force Gibbs state”, AVS Quantum Sci., 4 (2022), 12301–23  mathnet  crossref  isi  scopus
    4. G. M. Timofeev, A. S. Trushechkin, “Hamiltonian of mean force in the weak-coupling and high-temperature approximations and refined quantum master equations”, Int. J. Mod. Phys. A, 37:20 (2022), 2243021–24  mathnet  crossref
    5. Artur Czerwinski, “Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond”, Symmetry, 14:8 (2022), 1752  crossref
    6. Lajos Diósi, “Is there a relativistic Gorini-Kossakowski-Lindblad-Sudarshan master equation?”, Phys. Rev. D, 106:5 (2022)  crossref
    7. Dariusz Chruściński, “Dynamical maps beyond Markovian regime”, Physics Reports, 992 (2022), 1  crossref
    8. Anton Trushechkin, “Quantum master equations and steady states for the ultrastrong-coupling limit and the strong-decoherence limit”, Phys. Rev. A, 106:4 (2022), 42209–20  mathnet  crossref
    9. Alexander A. Andrianov, Mikhail V. Ioffe, Ekaterina A. Izotova, Oleg O. Novikov, “The Franke–Gorini–Kossakowski–Lindblad–Sudarshan (FGKLS) Equation for Two-Dimensional Systems”, Symmetry, 14:4 (2022), 754  crossref
    10. Simon Milz, Kavan Modi, “Quantum Stochastic Processes and Quantum non-Markovian Phenomena”, PRX Quantum, 2:3 (2021)  crossref
    11. Tommy Ohlsson, Shun Zhou, “Density-matrix formalism for PT -symmetric non-Hermitian Hamiltonians with the Lindblad equation”, Phys. Rev. A, 103:2 (2021)  crossref
    12. Philip Taranto, “Memory effects in quantum processes”, Int. J. Quantum Inform., 18:02 (2020), 1941002  crossref
    13. Dario De Santis, Markus Johansson, Bogna Bylicka, Nadja K. Bernardes, Antonio Acín, “Witnessing non-Markovian dynamics through correlations”, Phys. Rev. A, 102:1 (2020)  crossref
    14. A. A. Andrianov, M. V. Ioffe, E. A. Izotova, O. O. Novikov, “A perturbation algorithm for the pointers of Franke–Gorini–Kossakowski–Lindblad–Sudarshan equation”, Eur. Phys. J. Plus, 135:6 (2020)  crossref
    15. A A Andrianov, M V Ioffe, O O Novikov, “Supersymmetrization of the Franke–Gorini–Kossakowski–Lindblad–Sudarshan equation”, J. Phys. A: Math. Theor., 52:42 (2019), 425301  crossref
    16. M. A. Kurkov, V. A. Franke, “Local Fields Without Restrictions on the Spectrum of 4-Momentum Operator and Relativistic Lindblad Equation”, Found Phys, 41:5 (2011), 820  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :161
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025