Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 27, Number 2, Pages 149–162 (Mi tmf3313)  

This article is cited in 3 scientific papers (total in 3 papers)

Equations with homogeneous kernels and Mellin transformation of generalized functions

A. I. Komech
References:
Abstract: If an integrodifferential operator $A$ with homogeneous kernel on a half-axis is to be continuous in the space of tempered distributions, it is necessary and sufficient that its kernel satisfy a smoothness condition (Theorem 4, Definition 6). Under this condition, the eigenvalue $A^{-1}(\xi)$ corresponding to the eigenhtaction $x_{+}^{-i\xi}$ has growth not higher than a power as $|\xi|\to\infty$, $|\operatorname{Im}\xi|\leqslant C<\infty$. The operator $A$ is normally solvable if (and only if, under certain restrictions) $A^{-1}(\xi)$ also has growth not higher than a power for the same $\xi$. Expressions (2.12) are obtained for the general solution of the equation $Au=f$ in the form of convergent, i.e., regularized, integrals. The formalism of the Mellin transformation of generalized functions is developed for this purpose.
Received: 14.05.1975
English version:
Theoretical and Mathematical Physics, 1976, Volume 27, Issue 2, Pages 390–399
DOI: https://doi.org/10.1007/BF01051228
Bibliographic databases:
Language: Russian
Citation: A. I. Komech, “Equations with homogeneous kernels and Mellin transformation of generalized functions”, TMF, 27:2 (1976), 149–162; Theoret. and Math. Phys., 27:2 (1976), 390–399
Citation in format AMSBIB
\Bibitem{Kom76}
\by A.~I.~Komech
\paper Equations with homogeneous kernels and Mellin transformation of generalized functions
\jour TMF
\yr 1976
\vol 27
\issue 2
\pages 149--162
\mathnet{http://mi.mathnet.ru/tmf3313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=487440}
\zmath{https://zbmath.org/?q=an:0334.44006}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 27
\issue 2
\pages 390--399
\crossref{https://doi.org/10.1007/BF01051228}
Linking options:
  • https://www.mathnet.ru/eng/tmf3313
  • https://www.mathnet.ru/eng/tmf/v27/i2/p149
  • This publication is cited in the following 3 articles:
    1. Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russian Math. Surveys, 71:6 (2016), 1081–1134  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Yu. N. Drozhzhinov, B. I. Zavialov, “Tauberian theorem for generalized multiplicative convolutions”, Izv. Math., 64:1 (2000), 35–92  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Yu. N. Drozhzhinov, B. I. Zavialov, “A Wiener-type Tauberian theorem for generalized functions of slow growth”, Sb. Math., 189:7 (1998), 1047–1086  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :118
    References:66
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025