Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1976, Volume 27, Number 1, Pages 38–47 (Mi tmf3302)  

This article is cited in 8 scientific papers (total in 8 papers)

Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov–Parasyuk–Hepp–Zimmermann method

M. Z. Iofa, I. V. Tyutin
References:
Abstract: The Bogolyubov–Parasyuk–Hepp regularization procedure in Zimmermann's formulation is applied to non-Abelian gauge theories with spontaneously broken symmetry. Ward identities for the Green's function are proved in a general gauge. Gauge invarianee of the elements of the S-matrix of physical particles follows from the Ward identities. The proof that the S-matrix is gauge invariant is considered in detail for a Yang–Mills massless field.
Received: 14.04.1975
English version:
Theoretical and Mathematical Physics, 1976, Volume 27, Issue 1, Pages 316–322
DOI: https://doi.org/10.1007/BF01036547
Bibliographic databases:
Language: Russian
Citation: M. Z. Iofa, I. V. Tyutin, “Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov–Parasyuk–Hepp–Zimmermann method”, TMF, 27:1 (1976), 38–47; Theoret. and Math. Phys., 27:1 (1976), 316–322
Citation in format AMSBIB
\Bibitem{IofTyu76}
\by M.~Z.~Iofa, I.~V.~Tyutin
\paper Gauge invariance of spontaneously broken non-Abelian theories in the Bogolyubov--Parasyuk--Hepp--Zimmermann method
\jour TMF
\yr 1976
\vol 27
\issue 1
\pages 38--47
\mathnet{http://mi.mathnet.ru/tmf3302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=449292}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 27
\issue 1
\pages 316--322
\crossref{https://doi.org/10.1007/BF01036547}
Linking options:
  • https://www.mathnet.ru/eng/tmf3302
  • https://www.mathnet.ru/eng/tmf/v27/i1/p38
  • This publication is cited in the following 8 articles:
    1. Long Liang, Yue Yu, Xi Luo, “Non-Fermi-liquid behavior of the t-J model in the strange metal phase: U(1) gauge theory consistent with local constraints”, Phys. Rev. B, 110:7 (2024)  crossref
    2. Ilaria Brivio, Michael Trott, “The standard model as an effective field theory”, Physics Reports, 793 (2019), 1  crossref
    3. Ayuki Kamada, “On scalaron decay via the trace of energy-momentum tensor”, J. High Energ. Phys., 2019:7 (2019)  crossref
    4. M. Misiak, M. Paraskevas, J. Rosiek, K. Suxho, B. Zglinicki, “Effective field theories in Rξ gauges”, J. High Energ. Phys., 2019:2 (2019)  crossref
    5. Bryan W. Lynn, Glenn D. Starkman, “Global U(1)Y⊗BRST symmetry and the LSS theorem: Ward-Takahashi identities governing Green's functions, on-shell T -matrix elements, and the effective potential in the scalar sector of the spontaneously broken extended Abelian Higgs model”, Phys. Rev. D, 96:6 (2017)  crossref
    6. A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek, K. Suxho, “Feynman rules for the Standard Model Effective Field Theory in R
      ξ -gauges”, J. High Energ. Phys., 2017:6 (2017)  crossref
    7. Jos Gibbons, Atsushi Higuchi, “Removing the Faddeev-Popov zero modes from Yang-Mills theory in spacetimes with compact spatial sections”, Phys. Rev. D, 91:2 (2015)  crossref
    8. B. Altschul, “Lorentz violation and Faddeev-Popov ghosts”, Phys. Rev. D, 73:4 (2006)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:484
    Full-text PDF :162
    References:100
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025