Citation:
P. P. Kulish, “Conservation laws for a string in a static field”, TMF, 33:2 (1977), 272–275; Theoret. and Math. Phys., 33:2 (1977), 1016–1018
\Bibitem{Kul77}
\by P.~P.~Kulish
\paper Conservation laws for a~string in a~static field
\jour TMF
\yr 1977
\vol 33
\issue 2
\pages 272--275
\mathnet{http://mi.mathnet.ru/tmf3295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=456130}
\zmath{https://zbmath.org/?q=an:0381.53017}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 33
\issue 2
\pages 1016--1018
\crossref{https://doi.org/10.1007/BF01036599}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977FB63700008}
Linking options:
https://www.mathnet.ru/eng/tmf3295
https://www.mathnet.ru/eng/tmf/v33/i2/p272
This publication is cited in the following 10 articles:
Kitanine N. Nepomechie R.I. Reshetikhin N., “Quantum Integrability and Quantum Groups: a Special Issue in Memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201
“Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19
I V Barashenkov, V S Shchesnovich, R M Adams, “Noncoaxial multivortices in the complex sine-Gordon theory on the plane”, Nonlinearity, 15:6 (2002), 2121
E. A. Ivanov, “Duality in d=2σ models of chiral field with anomaly”, Theoret. and Math. Phys., 71:2 (1987), 474–484
A. P. Isaev, “Integrals of the motion of a closed relativistic string”, Theoret. and Math. Phys., 54:2 (1983), 134–140
J. M. Maillet, “Quantum U(1)-invariant theory from integrable classical models”, Phys. Rev. D, 26:10 (1982), 2755
I. V. Cherednik, “Algebraic aspects of two-dimensional chiral fields. II”, J. Soviet Math., 18:2 (1982), 211–254
Vladimir Makhankov, “Computer experiments in soliton theory”, Computer Physics Communications, 21:1 (1980), 1
B. S. Getmanov, “Integrable model of a nonlinear complex scalar field with nontrivial asymptotic behavior of soliton solutions”, Theoret. and Math. Phys., 38:2 (1979), 124–130
Etsuro Date, “On a construction of multi-soliton solutions of the Pohlmeyer-Lund-Regge system and the classical massive Thirring model”, Proc. Japan Acad. Ser. A Math. Sci., 55:8 (1979)