Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 131, Number 2, Pages 231–243
DOI: https://doi.org/10.4213/tmf327
(Mi tmf327)
 

This article is cited in 20 scientific papers (total in 20 papers)

Distribution Functions in Quantum Mechanics and Wigner Functions

L. S. Kuz'menkova, S. G. Maksimovb

a M. V. Lomonosov Moscow State University, Faculty of Physics
b Instituto Tecnologico de Morelia
References:
Abstract: We formulate and solve the problem of finding a distribution function F(r,p,t) such that calculating statistical averages leads to the same local values of the number of particles, the momentum, and the energy as those in quantum mechanics. The method is based on the quantum mechanical definition of the probability density not limited by the number of particles in the system. The obtained distribution function coincides with the Wigner function only for spatially homogeneous systems. We obtain the chain of Bogoliubov equations, the Liouville equation for quantum distribution functions with an arbitrary number of particles in the system, the quantum kinetic equation with a self-consistent electromagnetic field, and the general expression for the dielectric permittivity tensor of the electron component of the plasma. In addition to the known physical effects that determine the dispersion of longitudinal and transverse waves in plasma, the latter tensor contains a contribution from the exchange Coulomb correlations significant for dense systems.
Received: 29.03.2001
Revised: 16.10.2001
English version:
Theoretical and Mathematical Physics, 2002, Volume 131, Issue 2, Pages 641–650
DOI: https://doi.org/10.1023/A:1015472714896
Bibliographic databases:
Language: Russian
Citation: L. S. Kuz'menkov, S. G. Maksimov, “Distribution Functions in Quantum Mechanics and Wigner Functions”, TMF, 131:2 (2002), 231–243; Theoret. and Math. Phys., 131:2 (2002), 641–650
Citation in format AMSBIB
\Bibitem{KuzMak02}
\by L.~S.~Kuz'menkov, S.~G.~Maksimov
\paper Distribution Functions in Quantum Mechanics and Wigner Functions
\jour TMF
\yr 2002
\vol 131
\issue 2
\pages 231--243
\mathnet{http://mi.mathnet.ru/tmf327}
\crossref{https://doi.org/10.4213/tmf327}
\zmath{https://zbmath.org/?q=an:1038.81040}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 131
\issue 2
\pages 641--650
\crossref{https://doi.org/10.1023/A:1015472714896}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176246100006}
Linking options:
  • https://www.mathnet.ru/eng/tmf327
  • https://doi.org/10.4213/tmf327
  • https://www.mathnet.ru/eng/tmf/v131/i2/p231
  • This publication is cited in the following 20 articles:
    1. S. A. Maslov, V. B. Bobrov, S. A. Triger, TVT, 61:4 (2023), 492–496  mathnet  mathnet  crossref
    2. S. A. Maslov, V. B. Bobrov, S. A. Trigger, “Transverse Dielectric Permittivity of a Nondegenerate Collisional Electron Plasma”, High Temp, 61:4 (2023), 453  crossref
    3. Andreev P.A., “Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. I. Dielectric permeability tensor for magnetized plasmas”, Phys. Plasmas, 24:2 (2017), 022114  crossref  isi  scopus
    4. V. B. Bobrov, “On the transverse dielectric permittivity of degenerate electron plasma”, High Temperature, 55:4 (2017), 473–476  mathnet  crossref  crossref  isi  elib
    5. V. B. Bobrov, S. A. Triger, “Quantum effects in the transverse dielectric permittivity of a Maxwellian plasma”, Theoret. and Math. Phys., 192:3 (2017), 1396–1407  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Andreev P.A., “Quantum Kinetics of Spinning Neutral Particles: General Theory and Spin Wave Dispersion”, Physica A, 432 (2015), 108–126  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    7. Ivanov A.Yu. Kuz'menkov L.S., “Influence of Quantum Energy Equation on Electronic Plasma Oscillations”, Int. J. Mod. Phys. B, 29:19 (2015), 1550129  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    8. Pavel A. Andreev, “Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas”, Physics of Plasmas, 22:6 (2015)  crossref
    9. Ivanov A.Yu. Andreev P.A. Kuz'menkov L.S., “Balance Equations in Semi-Relativistic Quantum Hydrodynamics”, Int. J. Mod. Phys. B, 28:21 (2014), 1450132  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    10. Andreev P.A. Kuz'menkov L.S., “Waves of Magnetic Moment and Generation of Waves by Neutron Beam in Quantum Magnetized Plasma”, Int. J. Mod. Phys. B, 26:32 (2012), 1250186  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    11. S. V. Vladimirov, Yu. O. Tyshetskiy, “On description of a collisionless quantum plasma”, Phys. Usp., 54:12 (2011), 1243–1256  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    12. Tyshetskiy Yu., Vladimirov S.V., Kompaneets R., “On kinetic description of electromagnetic processes in a quantum plasma”, Phys Plasmas, 18:11 (2011), 112104  crossref  adsnasa  isi  elib  scopus  scopus
    13. Vladimirov S.V., Tyshetskiy Yu.O., “Kinetic Description of Quantum Plasma Dielectric Response”, International Topical Conference on Plasma Science: Strongly Coupled Ultra-Cold and Quantum Plasmas, AIP Conference Proceedings, 1421, eds. Shukla P., Mendonca J., Eliasson B., Resendes D., Amer Inst Physics, 2011  crossref  mathscinet  isi  scopus  scopus
    14. L. S. Kuz'menkov, S. G. Maksimov, “A Generalized Coordinate-Momentum Representation in Quantum Mechanics”, Theoret. and Math. Phys., 143:3 (2005), 821–835  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. Maximov SG, Kuzmenkov LS, Zavala JLG, “Local equilibrium approach for Fermi systems and quantum hydrodynamics”, International Journal of Quantum Chemistry, 100:4 (2004), 311–323  crossref  isi  scopus  scopus
    16. I. M. Aleshin, O. O. Trubachev, “Equilibrium State of Inhomogeneous Plasma”, Theoret. and Math. Phys., 138:1 (2004), 134–141  mathnet  mathnet  crossref  crossref  isi
    17. L. S. Kuz'menkov, S. G. Maksimov, “Distribution Functions in Quantum Mechanics and Wigner Functions”, Theoret. and Math. Phys., 131:2 (2002), 641–650  mathnet  mathnet  crossref  crossref  isi
    18. L. S. Kuz'menkov, S. G. Maksimov, “Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential”, Theoret. and Math. Phys., 118:2 (1999), 227–240  mathnet  mathnet  crossref  crossref  isi
    19. I. M. Aleshin, “Magnetohydrodynamics with regard to electron inertia: Some exact solutions”, Theoret. and Math. Phys., 116:3 (1998), 1011–1020  mathnet  mathnet  crossref  crossref  isi
    20. M. A. Drofa, L. S. Kuz'menkov, “Continual approach to the multiparticle systems with long-range interaction. Hierarchy of macroscopic fields and some physical consequences”, Theoret. and Math. Phys., 108:1 (1996), 849–859  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:568
    Full-text PDF :324
    References:66
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025