Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1972, Volume 13, Number 3, Pages 321–326 (Mi tmf3269)  

Analytic continuation of functions defined on subgroups of the complex Lorentz group

V. I. Kolomytsev
References:
Abstract: A question that arises in the group-theoretical approach to the problem of conspiring Regge trajectories is discussed - the analytic continuation of functions defined on subgroups of the complex Lorentz group. It is shown that a real-analytic function $f(\varphi,\cos\theta,\psi)$ on $SU(2)$ that is analytic in $\omega=\cos\theta$ in the whole plane can be continued to a complex-analytic function on $SL(2C)$.
Received: 12.11.1971
English version:
Theoretical and Mathematical Physics, 1972, Volume 13, Issue 3, Pages 1167–1170
DOI: https://doi.org/10.1007/BF01036140
Bibliographic databases:
Language: Russian
Citation: V. I. Kolomytsev, “Analytic continuation of functions defined on subgroups of the complex Lorentz group”, TMF, 13:3 (1972), 321–326; Theoret. and Math. Phys., 13:3 (1972), 1167–1170
Citation in format AMSBIB
\Bibitem{Kol72}
\by V.~I.~Kolomytsev
\paper Analytic continuation of functions defined on subgroups of the complex Lorentz group
\jour TMF
\yr 1972
\vol 13
\issue 3
\pages 321--326
\mathnet{http://mi.mathnet.ru/tmf3269}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=468742}
\zmath{https://zbmath.org/?q=an:0243.22010}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 13
\issue 3
\pages 1167--1170
\crossref{https://doi.org/10.1007/BF01036140}
Linking options:
  • https://www.mathnet.ru/eng/tmf3269
  • https://www.mathnet.ru/eng/tmf/v13/i3/p321
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024