Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 131, Number 2, Pages 197–205
DOI: https://doi.org/10.4213/tmf324
(Mi tmf324)
 

This article is cited in 10 scientific papers (total in 10 papers)

Kovalevskaya Top: An Elementary Approach

A. M. Perelomov

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: We give an elementary, very short solution to the equations of motion for the Kovalevskaya top, using some results from the original papers by Kovalevskaya, Këtter, and Weber and also the Lax representation obtained by the author.
Received: 12.10.2001
Revised: 16.11.2001
English version:
Theoretical and Mathematical Physics, 2002, Volume 131, Issue 2, Pages 612–620
DOI: https://doi.org/10.1023/A:1015416529917
Bibliographic databases:
Language: Russian
Citation: A. M. Perelomov, “Kovalevskaya Top: An Elementary Approach”, TMF, 131:2 (2002), 197–205; Theoret. and Math. Phys., 131:2 (2002), 612–620
Citation in format AMSBIB
\Bibitem{Per02}
\by A.~M.~Perelomov
\paper Kovalevskaya Top: An Elementary Approach
\jour TMF
\yr 2002
\vol 131
\issue 2
\pages 197--205
\mathnet{http://mi.mathnet.ru/tmf324}
\crossref{https://doi.org/10.4213/tmf324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1932251}
\zmath{https://zbmath.org/?q=an:1042.70005}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 131
\issue 2
\pages 612--620
\crossref{https://doi.org/10.1023/A:1015416529917}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176246100003}
Linking options:
  • https://www.mathnet.ru/eng/tmf324
  • https://doi.org/10.4213/tmf324
  • https://www.mathnet.ru/eng/tmf/v131/i2/p197
  • This publication is cited in the following 10 articles:
    1. Alexei A. Deriglazov, “Improved Equations of the Lagrange Top and Examples of Analytical Solutions”, Particles, 7:3 (2024), 543  crossref
    2. Hayashi M., Shigemoto K., Tsukioka T., “Two Flows Kowalevski TOP as the Full Genus Two Jacobi'S Inversion Problem and Sp(4, R ) Lie Group Structure”, J. Phys. Commun., 6:2 (2022), 025006  crossref  isi  scopus
    3. Erik Khastyan, Sergey Krivonos, Armen Nersessian, “Euler top and freedom in supersymmetrization of one-dimensional mechanics”, Physics Letters A, 452 (2022), 128442  crossref
    4. A. V. Belyaev, “Representation of solutions to the problem of the motion of a heavy rigid body in the Kovalevskaya case in terms of Weierstrass $\zeta$- and $\wp$-functions and nonintegrability of the Hess case by quadratures”, Sb. Math., 207:7 (2016), 889–914  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Kurt L., “Lax Forms and the Euler TOP Equations: a New Approach”, Ann. Phys., 327:4 (2012), 1231–1237  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    6. Guillaumin, E, “From the Kovalevskaya to the Lagrange case in rigid body motion”, International Journal of Non-Linear Mechanics, 43:8 (2008), 794  crossref  zmath  adsnasa  isi  scopus  scopus
    7. Arango, CA, “Classical mechanics of dipolar asymmetric top molecules in collinear static electric and nonresonant linearly polarized laser fields: Energy-momentum diagrams, bifurcations and accessible configuration space”, International Journal of Bifurcation and Chaos, 18:4 (2008), 1127  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Komarov, IV, “On a trajectory isomorphism of the Kowalevski gyrostat and the Clebsch problem”, Journal of Physics A-Mathematical and General, 38:13 (2005), 2917  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Kuang, JL, “Homoclinic orbits of the Kovalevskaya top with perturbations”, Zamm-Zeitschrift fur Angewandte Mathematik und Mechanik, 85:4 (2005), 277  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Komarov IV, Tsiganov AV, “On integration of the Kowalevski gyrostat and the Clebsch problems”, Regular & Chaotic Dynamics, 9:2 (2004), 169–187  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1294
    Full-text PDF :700
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025