Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1977, Volume 33, Number 1, Pages 110–118 (Mi tmf3208)  

This article is cited in 10 scientific papers (total in 10 papers)

Structure of ground states in three-dimensional using model with three-step interaction

I. A. Kashapov
References:
Abstract: The recent work [1] by S.  A. Pirogov and Ya.  G. Sinay investigated the phase diagrams for classical lattice systems with finite number of ground states, which satisfy a certain stability condition. This condition was called the Payerls condition in the work [1]. For corresponding Hamiltonians it was proved that the structure of the phase diagrams is determined by the structure of ground states. Thus the problem of studying the phase diagrams was reduced to the problem of investigating the ground states of the original Hamiltonians. Structure of ground states for three-dimensional Ising model with the two-step interaction is given in the work [2] by V.  M. Gertsik and R.  L. Dobrushin. The present work investigates the structure of ground states and tests the Payerls condition for certain Hamiltonians of the Ising type. Some generalizations are presented in the last section of the paper.
Received: 07.02.1977
English version:
Theoretical and Mathematical Physics, 1977, Volume 33, Issue 1, Pages 912–918
DOI: https://doi.org/10.1007/BF01039015
Bibliographic databases:
Language: Russian
Citation: I. A. Kashapov, “Structure of ground states in three-dimensional using model with three-step interaction”, TMF, 33:1 (1977), 110–118; Theoret. and Math. Phys., 33:1 (1977), 912–918
Citation in format AMSBIB
\Bibitem{Kas77}
\by I.~A.~Kashapov
\paper Structure of ground states in three-dimensional using model with three-step interaction
\jour TMF
\yr 1977
\vol 33
\issue 1
\pages 110--118
\mathnet{http://mi.mathnet.ru/tmf3208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=456168}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 33
\issue 1
\pages 912--918
\crossref{https://doi.org/10.1007/BF01039015}
Linking options:
  • https://www.mathnet.ru/eng/tmf3208
  • https://www.mathnet.ru/eng/tmf/v33/i1/p110
  • This publication is cited in the following 10 articles:
    1. Farrukh Mukhamedov, Muzaffar M. Rahmatullaev, Dilshodbek O. EgAMOV, “Periodic ground states for the mixed spin ising model with competing interactions on a Cayley tree”, Reports on Mathematical Physics, 91:3 (2023), 379  crossref
    2. N. M. Khatamov, “New classes of ground states for the Potts model with random competing interactions on a Cayley tree”, Theoret. and Math. Phys., 180:1 (2014), 827–834  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. Rozikov U.A., “Gibbs Measures on Cayley Trees: Results and Open Problems”, Rev. Math. Phys., 25:1 (2013), 1330001  crossref  isi
    4. Gibbs Measures and Phase Transitions, 2011, 495  crossref
    5. G. I. Botirov, U. A. Rozikov, “Potts model with competing interactions on the Cayley tree: The contour method”, Theoret. and Math. Phys., 153:1 (2007), 1423–1433  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Mukhamedov, F, “On contour arguments for the three state Potts model with competing interactions on a semi-infinite Cayley tree”, Journal of Mathematical Physics, 48:1 (2007), 013301  crossref  isi
    7. Rozikov, UA, “A constructive description of ground states and Gibbs measures for Ising model with two-step interactions on Cayley tree”, Journal of Statistical Physics, 122:2 (2006), 217  crossref  isi
    8. G I Botirov, U A Rozikov, “Onq-component models on the Cayley tree: the general case”, J. Stat. Mech., 2006:10 (2006), P10006  crossref
    9. U A Rozikov, “On q-Component Models on Cayley Tree: Contour Method”, Lett Math Phys, 71:1 (2005), 27  crossref
    10. Gibbs Measures and Phase Transitions, 1988  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :123
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025