Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1977, Volume 33, Number 1, Pages 42–53 (Mi tmf3203)  

This article is cited in 18 scientific papers (total in 18 papers)

Spontaneous breaking of gauge symmetry in a nonstationary isotropic metric

A. A. Grib, V. M. Mostepanenko, V. M. Frolov
References:
Abstract: The theory of complex scalar field in nonstationary isotropic metrics of the open type is considered. It is shown that the self-interaction of the field in such a theory leads to spontaneous breakdown of gauge symmetry. In distinction to the Goldstone model one has no need to use the negative values of the mass squared. Interaction with vector field leads to the Higgs phenomenon in the open Friedmann space. By means of the analysis of corresponding nonlinear differential equations the energy density and the pressure of the field in nonsymmetric vacuum state are found. The effective time of existence of spontaneous breakdown of symmetry for massive field near the cosmological singularity is calculated for the different laws of the expansion.
Received: 20.01.1977
English version:
Theoretical and Mathematical Physics, 1977, Volume 33, Issue 1, Pages 42–53
DOI: https://doi.org/10.1007/BF01039010
Language: Russian
Citation: A. A. Grib, V. M. Mostepanenko, V. M. Frolov, “Spontaneous breaking of gauge symmetry in a nonstationary isotropic metric”, TMF, 33:1 (1977), 42–53; Theoret. and Math. Phys., 33:1 (1977), 42–53
Citation in format AMSBIB
\Bibitem{GriMosFro77}
\by A.~A.~Grib, V.~M.~Mostepanenko, V.~M.~Frolov
\paper Spontaneous breaking of gauge symmetry in a~nonstationary isotropic metric
\jour TMF
\yr 1977
\vol 33
\issue 1
\pages 42--53
\mathnet{http://mi.mathnet.ru/tmf3203}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 33
\issue 1
\pages 42--53
\crossref{https://doi.org/10.1007/BF01039010}
Linking options:
  • https://www.mathnet.ru/eng/tmf3203
  • https://www.mathnet.ru/eng/tmf/v33/i1/p42
  • This publication is cited in the following 18 articles:
    1. Vladik Kreinovich, Luc Longpré, Adriana Beltran, Studies in Big Data, 33, Quantum Computing:An Environment for Intelligent Large Scale Real Application, 2018, 229  crossref
    2. G. L. Klimchitskaya, V. M. Mostepanenko, “New constraints on Yukawa-type corrections to Newtonian gravity at short separations”, Gravit. Cosmol., 20:1 (2014), 3  crossref
    3. A. Barroso, J. Casasayas, P. Crawford, P. Moniz, A. Nunes, “Inflation in the presence of a non-minimal coupling”, Physics Letters B, 275:3-4 (1992), 264  crossref
    4. P. Moniz, P. Crawford, A. Barroso, Lecture Notes in Physics, 383, The Physical Universe: The Interface Between Cosmology, Astrophysics and Particle Physics, 1991, 227  crossref
    5. V. F. Panov, “Spontaneous symmetry breaking in cosmological models with rotation”, Theoret. and Math. Phys., 74:3 (1988), 316–320  mathnet  crossref  isi
    6. Y. Verbin, “Spontaneous symmetry breaking in the presence of gravitational fields”, Nuclear Physics B, 272:3-4 (1986), 739  crossref
    7. Yutaka Hosotani, “Exact solution to the Einstein-Yang-Mills equation”, Physics Letters B, 147:1-3 (1984), 44  crossref
    8. Prasun Kundu, “A model of spontaneous symmetry breakdown in spatially flat cosmological spacetimes”, Nuclear Physics B, 248:3 (1984), 727  crossref
    9. V.N. Melnikov, S.V. Orlov, “A scalar field with self-interaction leads to the absence of a singularity in cosmology”, Physics Letters A, 95:5 (1983), 226  crossref
    10. Prasun Kundu, “Spontaneous symmetry breaking in cosmological spacetimes”, Physics Letters B, 131:1-3 (1983), 40  crossref
    11. G. Horwitz, Lecture Notes in Physics, 176, Gauge Theory and Gravitation, 1983, 254  crossref
    12. Jose M. Cerveró, P.G. Estévez, “Induced gravity and cosmology”, Annals of Physics, 142:1 (1982), 64  crossref
    13. V. G. Lapchinskii, V. A. Rubakov, “Spontaneous symmetry breaking in an open Friedmann universe”, Theoret. and Math. Phys., 42:1 (1980), 23–28  mathnet  crossref  mathscinet  isi
    14. A. V. Veryaskin, V. G. Lapchinskii, V. A. Rubakov, “Spontaneous symmetry breaking in a closed cosmological Friedmann model”, Theoret. and Math. Phys., 45:3 (1980), 1109–1118  mathnet  crossref  mathscinet  isi
    15. A.D. Linde, “Gauge theories, time-dependence of the gravitational constant and antigravity in the early universe”, Physics Letters B, 93:4 (1980), 394  crossref
    16. A. A. Grib, S. G. Mamayev, V. M. Mostepanenko, “Vacuum Stress‐Energy Tensor and Particle Creation in Isotropic Cosmological Models”, Fortschr. Phys., 28:4 (1980), 173  crossref
    17. A. A. Grib, V. M. Mostepanenko, V. M. Frolov, “Spontaneous breaking of CP-symmetry in a nonstationary isotropic metric”, Theoret. and Math. Phys., 37:2 (1978), 975–983  mathnet  crossref  mathscinet
    18. A. A. Grib, V. M. Mostepanenko, V. M. Frolov, “Breaking of conformal symmetry and quantization in curved spacetime”, Theoret. and Math. Phys., 37:3 (1978), 1065–1070  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :131
    References:43
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025