Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 138, Number 3, Pages 395–400
DOI: https://doi.org/10.4213/tmf32
(Mi tmf32)
 

This article is cited in 106 scientific papers (total in 106 papers)

Combinatorial Nature of the Ground-State Vector of the O(1) Loop Model

A. V. Razumov, Yu. G. Stroganov

Institute for High Energy Physics
References:
Abstract: Studying a possible connection between the ground-state vector for some special spin systems and the so-called alternating-sign matrices, we find numerical evidence that the components of the ground-state vector of the O(1) loop model coincide with the numbers of the states of the so-called fully packed loop model with fixed pairing patterns. The states of the latter system are in one-to-one correspondence with alternating-sign matrices. This allows advancing the hypothesis that the components of the ground-state vector of the O(1) loop model coincide with the cardinalities of the corresponding subsets of the alternating-sign matrices. In a sense, our conjecture generalizes the conjecture of Bosley and Fidkowski, which was refined by Cohn and Propp and proved by Wieland.
Keywords: loop model, ground state, fully packed loop model.
Received: 06.05.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 138, Issue 3, Pages 333–337
DOI: https://doi.org/10.1023/B:TAMP.0000018450.36514.d7
Bibliographic databases:
Language: Russian
Citation: A. V. Razumov, Yu. G. Stroganov, “Combinatorial Nature of the Ground-State Vector of the O(1) Loop Model”, TMF, 138:3 (2004), 395–400; Theoret. and Math. Phys., 138:3 (2004), 333–337
Citation in format AMSBIB
\Bibitem{RazStr04}
\by A.~V.~Razumov, Yu.~G.~Stroganov
\paper Combinatorial Nature of the Ground-State Vector of the $O(1)$ Loop Model
\jour TMF
\yr 2004
\vol 138
\issue 3
\pages 395--400
\mathnet{http://mi.mathnet.ru/tmf32}
\crossref{https://doi.org/10.4213/tmf32}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2077318}
\zmath{https://zbmath.org/?q=an:1178.82020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138..333R}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 3
\pages 333--337
\crossref{https://doi.org/10.1023/B:TAMP.0000018450.36514.d7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220859500004}
Linking options:
  • https://www.mathnet.ru/eng/tmf32
  • https://doi.org/10.4213/tmf32
  • https://www.mathnet.ru/eng/tmf/v138/i3/p395
  • This publication is cited in the following 106 articles:
    1. Christian Hagendorf, Hjalmar Rosengren, “Nearest-Neighbour Correlation Functions for the Supersymmetric XYZ Spin Chain and Painlevé VI”, Commun. Math. Phys., 405:4 (2024)  crossref
    2. A M Povolotsky, A A Trofimova, “Exact loop densities in O(1) dense loop model on a cylinder of odd circumference and clusters in half-turn self-dual critical percolation”, J. Stat. Mech., 2024:12 (2024), 123101  crossref
    3. A M Povolotsky, “Exact densities of loops in O(1) dense loop model and of clusters in critical percolation on a cylinder: II. Rotated lattice”, J. Stat. Mech., 2023:3 (2023), 033103  crossref
    4. Korff Ch., “Cylindric Hecke Characters and Gromov-Witten Invariants Via the Asymmetric Six-Vertex Model”, Commun. Math. Phys., 381:2 (2021), 591–640  crossref  mathscinet  isi  scopus
    5. Ryan K., “The Manhattan and Lorentz Mirror Models: a Result on the Cylinder With Low Density of Mirrors”, J. Stat. Phys., 185:2 (2021), 7  crossref  mathscinet  isi
    6. Di Francesco Ph., “Twenty Vertex Model and Domino Tilings of the Aztec Triangle”, Electron. J. Comb., 28:4 (2021), P4.38  crossref  mathscinet  isi
    7. Povolotsky A.M., “Exact Densities of Loops in O(1) Dense Loop Model and of Clusters in Critical Percolation on a Cylinder”, J. Phys. A-Math. Theor., 54:22 (2021), 22LT01  crossref  mathscinet  isi
    8. Pak I., Petrov F., “Hidden Symmetries of Weighted Lozenge Tilings”, Electron. J. Comb., 27:3 (2020), P3.44  crossref  mathscinet  isi
    9. Aggarwal A., “Arctic Boundaries of the Ice Model on Three-Bundle Domains”, Invent. Math., 220:2 (2020), 611–671  crossref  mathscinet  isi
    10. Solhjem S., Striker J., “Sign Matrix Polytopes From Young Tableaux”, Linear Alg. Appl., 574 (2019), 84–122  crossref  mathscinet  isi
    11. Knutson A., Zinn-Justin P., “Grassmann-Grassmann Conormal Varieties, Integrability, and Plane Partitions”, Ann. Inst. Fourier, 69:3 (2019), 1087–1145  crossref  mathscinet  isi  scopus
    12. Granet E., Jacobsen J.L., Saleur H., “Spontaneous Symmetry Breaking in 2D Supersphere SIGMA Models and Applications to Intersecting Loop Soups”, J. Phys. A-Math. Theor., 52:34 (2019), 345001  crossref  mathscinet  isi
    13. Povolotsky A.M., “Laws of Large Numbers in the Raise and Peel Model”, J. Stat. Mech.-Theory Exp., 2019, 074003  crossref  mathscinet  isi
    14. Aigner F., “Refined Enumerations of Alternating Sign Triangles”, Adv. Appl. Math., 111 (2019), UNSP 101921  crossref  mathscinet  isi  scopus
    15. Povolotsky A.M. Pyatov P. Rittenberg V., “Large Deviations of Avalanches in the Raise and Peel Model”, J. Stat. Mech.-Theory Exp., 2018, 053107  crossref  mathscinet  isi  scopus  scopus
    16. Aigner F., “Fully Packed Loop Configurations: Polynomiality and Nested Arches”, Electron. J. Comb., 25:1 (2018), P1.27  mathscinet  zmath  isi
    17. Paul Zinn-Justin, “Loop Models and K-Theory”, SIGMA, 14 (2018), 069, 48 pp.  mathnet  crossref
    18. Philippe Biane, Abel Symposia, 13, Computation and Combinatorics in Dynamics, Stochastics and Control, 2018, 99  crossref
    19. Weston R., Yang J., “Lattice Supersymmetry in the Open Xxz Model: An Algebraic Bethe Ansatz Analysis”, J. Stat. Mech.-Theory Exp., 2017, 123104  crossref  mathscinet  isi  scopus  scopus
    20. Kenyon R., Miller J., Sheffield S., Wilson D.B., “Six-Vertex Model and Schramm-Loewner Evolution”, Phys. Rev. E, 95:5 (2017), 052146  crossref  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:769
    Full-text PDF :266
    References:71
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025