Abstract:
Studying a possible connection between the ground-state vector for some special spin systems and the so-called alternating-sign matrices, we find numerical evidence that the components of the ground-state vector of the O(1) loop model coincide with the numbers of the states of the so-called fully packed loop model with fixed pairing patterns. The states of the latter system are in one-to-one correspondence with alternating-sign matrices. This allows advancing the hypothesis that the components of the ground-state vector of the O(1) loop model coincide with the cardinalities of the corresponding subsets of the alternating-sign matrices. In a sense, our conjecture generalizes the conjecture of Bosley and Fidkowski, which was refined by Cohn and Propp and proved by Wieland.
Citation:
A. V. Razumov, Yu. G. Stroganov, “Combinatorial Nature of the Ground-State Vector of the O(1) Loop Model”, TMF, 138:3 (2004), 395–400; Theoret. and Math. Phys., 138:3 (2004), 333–337
\Bibitem{RazStr04}
\by A.~V.~Razumov, Yu.~G.~Stroganov
\paper Combinatorial Nature of the Ground-State Vector of the $O(1)$ Loop Model
\jour TMF
\yr 2004
\vol 138
\issue 3
\pages 395--400
\mathnet{http://mi.mathnet.ru/tmf32}
\crossref{https://doi.org/10.4213/tmf32}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2077318}
\zmath{https://zbmath.org/?q=an:1178.82020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...138..333R}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 138
\issue 3
\pages 333--337
\crossref{https://doi.org/10.1023/B:TAMP.0000018450.36514.d7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220859500004}
Linking options:
https://www.mathnet.ru/eng/tmf32
https://doi.org/10.4213/tmf32
https://www.mathnet.ru/eng/tmf/v138/i3/p395
This publication is cited in the following 106 articles:
Christian Hagendorf, Hjalmar Rosengren, “Nearest-Neighbour Correlation Functions for the Supersymmetric XYZ Spin Chain and Painlevé VI”, Commun. Math. Phys., 405:4 (2024)
A M Povolotsky, A A Trofimova, “Exact loop densities in O(1) dense loop model on a cylinder of odd circumference and clusters in half-turn self-dual critical percolation”, J. Stat. Mech., 2024:12 (2024), 123101
A M Povolotsky, “Exact densities of loops in O(1) dense loop model and of clusters in critical percolation on a cylinder: II. Rotated lattice”, J. Stat. Mech., 2023:3 (2023), 033103
Korff Ch., “Cylindric Hecke Characters and Gromov-Witten Invariants Via the Asymmetric Six-Vertex Model”, Commun. Math. Phys., 381:2 (2021), 591–640
Ryan K., “The Manhattan and Lorentz Mirror Models: a Result on the Cylinder With Low Density of Mirrors”, J. Stat. Phys., 185:2 (2021), 7
Di Francesco Ph., “Twenty Vertex Model and Domino Tilings of the Aztec Triangle”, Electron. J. Comb., 28:4 (2021), P4.38
Povolotsky A.M., “Exact Densities of Loops in O(1) Dense Loop Model and of Clusters in Critical Percolation on a Cylinder”, J. Phys. A-Math. Theor., 54:22 (2021), 22LT01
Pak I., Petrov F., “Hidden Symmetries of Weighted Lozenge Tilings”, Electron. J. Comb., 27:3 (2020), P3.44
Aggarwal A., “Arctic Boundaries of the Ice Model on Three-Bundle Domains”, Invent. Math., 220:2 (2020), 611–671
Solhjem S., Striker J., “Sign Matrix Polytopes From Young Tableaux”, Linear Alg. Appl., 574 (2019), 84–122
Knutson A., Zinn-Justin P., “Grassmann-Grassmann Conormal Varieties, Integrability, and Plane Partitions”, Ann. Inst. Fourier, 69:3 (2019), 1087–1145
Granet E., Jacobsen J.L., Saleur H., “Spontaneous Symmetry Breaking in 2D Supersphere SIGMA Models and Applications to Intersecting Loop Soups”, J. Phys. A-Math. Theor., 52:34 (2019), 345001
Povolotsky A.M., “Laws of Large Numbers in the Raise and Peel Model”, J. Stat. Mech.-Theory Exp., 2019, 074003