|
This article is cited in 34 scientific papers (total in 34 papers)
$\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$
N. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
Abstract:
We consider the Potts model on the set $\mathbb {Z}$ in the field $Q_p$ of $p$-adic numbers. The range of the spin variables $\sigma (n)$, $n\in \mathbb Z$, in this model is $\Phi =\{\sigma _1,\sigma _2,\dots \dots ,\sigma _q\}\subset
Q_p^{q-1}=\underbrace {Q_p\times Q_p\times \dots \times Q_p}_{q-1}$.
We show that there are some values $q=q(p)$ for which phase transitions.
Received: 24.01.2001 Revised: 20.06.2001
Citation:
N. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “$\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$”, TMF, 130:3 (2002), 500–507; Theoret. and Math. Phys., 130:3 (2002), 425–431
Linking options:
https://www.mathnet.ru/eng/tmf315https://doi.org/10.4213/tmf315 https://www.mathnet.ru/eng/tmf/v130/i3/p500
|
Statistics & downloads: |
Abstract page: | 439 | Full-text PDF : | 190 | References: | 61 | First page: | 1 |
|