Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1977, Volume 32, Number 1, Pages 120–126 (Mi tmf3142)  

Relativistic particle bound by short-range forces in an electric field

N. F. Pereliman
References:
Abstract: Solution of the Dirac equation for a particle bound by forces with zero radius of action in the electric field is found. The polarizability and decay probability of a bound state for both particle and antiparticle are obtained. In nonrelativistic case the formulas obtained coincide with those obtained in the work by Demkov and Drukarev [1].
Received: 27.07.1976
English version:
Theoretical and Mathematical Physics, 1977, Volume 32, Issue 1, Pages 636–641
DOI: https://doi.org/10.1007/BF01041439
Language: Russian
Citation: N. F. Pereliman, “Relativistic particle bound by short-range forces in an electric field”, TMF, 32:1 (1977), 120–126; Theoret. and Math. Phys., 32:1 (1977), 636–641
Citation in format AMSBIB
\Bibitem{Per77}
\by N.~F.~Pereliman
\paper Relativistic particle bound by short-range forces in an electric field
\jour TMF
\yr 1977
\vol 32
\issue 1
\pages 120--126
\mathnet{http://mi.mathnet.ru/tmf3142}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 32
\issue 1
\pages 636--641
\crossref{https://doi.org/10.1007/BF01041439}
Linking options:
  • https://www.mathnet.ru/eng/tmf3142
  • https://www.mathnet.ru/eng/tmf/v32/i1/p120
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:334
    Full-text PDF :107
    References:40
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024