Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1977, Volume 32, Number 1, Pages 70–87 (Mi tmf3137)  

This article is cited in 21 scientific papers (total in 21 papers)

Finiteness of the discrete spectrum of many-particle Hamiltonians in symmetry spaces

S. A. Vugal'ter, G. M. Zhislin
References:
Abstract: Sufficient conditions are found of the finiteness of discrete spectrum of energy operators (in terms of the coordinate and momentum representation) in the symmetry spaces for many-particle systems for which the boundary of continuous spectrum of the Hamiltonian is determined by the dividing into two stable subsystems. In particular, molecules, negative ions of any atoms and systems with short-range interactions are considered. For the systems under consideration the results obtained generalize those known earlier.
Received: 21.05.1976
English version:
Theoretical and Mathematical Physics, 1977, Volume 32, Issue 1, Pages 602–614
DOI: https://doi.org/10.1007/BF01041434
Bibliographic databases:
Language: Russian
Citation: S. A. Vugal'ter, G. M. Zhislin, “Finiteness of the discrete spectrum of many-particle Hamiltonians in symmetry spaces”, TMF, 32:1 (1977), 70–87; Theoret. and Math. Phys., 32:1 (1977), 602–614
Citation in format AMSBIB
\Bibitem{VugZhi77}
\by S.~A.~Vugal'ter, G.~M.~Zhislin
\paper Finiteness of the discrete spectrum of many-particle Hamiltonians in symmetry spaces
\jour TMF
\yr 1977
\vol 32
\issue 1
\pages 70--87
\mathnet{http://mi.mathnet.ru/tmf3137}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=449304}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 32
\issue 1
\pages 602--614
\crossref{https://doi.org/10.1007/BF01041434}
Linking options:
  • https://www.mathnet.ru/eng/tmf3137
  • https://www.mathnet.ru/eng/tmf/v32/i1/p70
  • This publication is cited in the following 21 articles:
    1. Mathieu Lewin, Mathématiques et Applications, 87, Théorie spectrale et mécanique quantique, 2022, 221  crossref
    2. Simon B., “Tosio Kato'S Work on Non-Relativistic Quantum Mechanics, Part 2”, Bull. Math. Sci., 9:1 (2019), UNSP 1950005  crossref  isi
    3. Brian T. Sutcliffe, “An analysis of the role of the Born–Oppenheimer approximation in calculating rotational–vibrational interactions in molecules”, Theor Chem Acc, 130:2-3 (2011), 187  crossref
    4. Brian T. Sutcliffe, “What mathematicians know about the solutions of Schrodinger Coulomb Hamiltonian. Should chemists care?”, J Math Chem, 44:4 (2008), 988  crossref
    5. Brian T. Sutcliffe, R. Guy Woolley, “Molecular structure calculations without clamping the nuclei”, Phys. Chem. Chem. Phys., 7:21 (2005), 3664  crossref
    6. Brian Sutcliffe, “Some observations on P.‐O. Löwdin's definition of a molecule”, Int J of Quantum Chemistry, 90:1 (2002), 66  crossref
    7. W. Hunziker, I. M. Sigal, “The quantum N-body problem”, Journal of Mathematical Physics, 41:6 (2000), 3448  crossref
    8. Brian Sutcliffe, Advances in Chemical Physics, 114, Advances in Chemical Physics, 2000, 1  crossref
    9. Brian T. Sutcliffe, Lecture Notes in Chemistry, 71, Potential Energy Surfaces, 1999, 61  crossref
    10. S. A. Vugal'ter, G. M. Zhislin, “The Discrete Spectrum of a Many-Particle Pseudorelativistic Hamiltonian”, Funct. Anal. Appl., 32:2 (1998), 134–136  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Brian T. Sutcliffe, Fundamental Principles of Molecular Modeling, 1996, 11  crossref
    12. Brian T. Sutcliffe, “The idea of a potential energy surface”, Journal of Molecular Structure: THEOCHEM, 341:1-3 (1995), 217  crossref
    13. Volker Bach, Roger Lewis, Elliott H. Lieb, Heinz Siedentop, “On the number of bound states of a bosonicN-particle Coulomb system”, Math Z, 214:1 (1993), 441  crossref
    14. W. D. Evans, Roger T. Lewis, Yoshimi Saitò, “Zhislin's theorem revisited”, J. Anal. Math., 58:1 (1992), 191  crossref
    15. S. A. Vugal'ter, “Asymptotic behavior of the eigenvalues of many-particle Hamiltonians on subspaces of functions of a given symmetry”, Theoret. and Math. Phys., 83:2 (1990), 502–510  mathnet  crossref  mathscinet  isi
    16. S. A. Vugal'ter, G. M. Zhislin, “On finiteness of the discrete spectrum of the energy operators of multiatomic molecules”, Theoret. and Math. Phys., 55:1 (1983), 357–365  mathnet  crossref  mathscinet  isi
    17. S. A. Vugal'ter, G. M. Zhislin, “On the discrete spectrum of the energy operator of one- and two-dimensional quantum three-particle systems”, Theoret. and Math. Phys., 55:2 (1983), 493–502  mathnet  crossref  mathscinet  isi
    18. I. M. Sigal, “Geometric methods in the quantum many-body problem. Nonexistence of very negative ions”, Commun.Math. Phys., 85:2 (1982), 309  crossref
    19. I. M. Sigal, Lecture Notes in Physics, 153, Mathematical Problems in Theoretical Physics, 1982, 149  crossref
    20. Mary Beth Ruskai, “Absence of discrete spectrum in highly negative ions”, Commun.Math. Phys., 82:4 (1982), 457  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :115
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025