Abstract:
The results are given of calculations of the Gelt-Mann–Low function in the four-loop
approximation in the massless model with quartic interaction. The coefficients in the
expansion of the Gell-Mann–Low function calculated in the framework of perturbation
theory are compared with the coefficients calculated in accordance with the asymptotic
formula.
Citation:
F. M. Dittes, Yu. A. Kubyshin, O. V. Tarasov, “Four-loop approximation in the φ4 model”, TMF, 37:1 (1978), 66–73; Theoret. and Math. Phys., 37:1 (1978), 879–884
\Bibitem{DitKubTar78}
\by F.~M.~Dittes, Yu.~A.~Kubyshin, O.~V.~Tarasov
\paper Four-loop approximation in the $\varphi^4$ model
\jour TMF
\yr 1978
\vol 37
\issue 1
\pages 66--73
\mathnet{http://mi.mathnet.ru/tmf3098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=514137}
\transl
\jour Theoret. and Math. Phys.
\yr 1978
\vol 37
\issue 1
\pages 879--884
\crossref{https://doi.org/10.1007/BF01036288}
Linking options:
https://www.mathnet.ru/eng/tmf3098
https://www.mathnet.ru/eng/tmf/v37/i1/p66
This publication is cited in the following 27 articles:
Tom Steudtner, “General scalar renormalisation group equations at three-loop order”, J. High Energ. Phys., 2020:12 (2020)
J. A. Gracey, “Six-dimensional ultraviolet completion of the ℂℙ(N) σ model at two loops”, Mod. Phys. Lett. A, 35:22 (2020), 2050188
J. A. Gracey, “Renormalization of scalar field theories in rational spacetime dimensions”, Eur. Phys. J. C, 80:7 (2020)
McKane A.J., “Perturbation Expansions At Large Order: Results For Scalar Field Theories Revisited”, J. Phys. A-Math. Theor., 52:5 (2019), 055401
Gracey J.A., “Large N-F Quantum Field Theory”, Int. J. Mod. Phys. A, 33:35 (2018), 1830032
Kompaniets M.V., Panzer E., “Minimally Subtracted Six-Loop Renormalization of O(N)-Symmetric Phi(4) Theory and Critical Exponents”, Phys. Rev. D, 96:3 (2017), 036016
Manashov A.N. Skvortsov E.D. Strohmaier M., “Higher Spin Currents in the Critical O(N) Vector Model At 1/N-2”, J. High Energy Phys., 2017, no. 8, 106
J. A. Gracey, R. M. Simms, “Higher dimensional higher derivative
ϕ4
theory”, Phys. Rev. D, 96:2 (2017)
YUE-LIANG WU, “QUANTUM STRUCTURE OF FIELD THEORY AND STANDARD MODEL BASED ON INFINITY-FREE LOOP REGULARIZATION/RENORMALIZATION”, Int. J. Mod. Phys. A, 29:03n04 (2014), 1430007
Da Huang, Yue-Liang Wu, “Consistency and advantage of loop regularization method merging with Bjorken–Drell's analogy between Feynman diagrams and electrical circuits”, Eur. Phys. J. C, 72:7 (2012)
I. M. Suslov, “Renormalization group functions of the φ4 theory in the strong coupling limit: Analytical results”, J. Exp. Theor. Phys., 107:3 (2008), 413
I. M. Suslov, “Divergent perturbation series”, J. Exp. Theor. Phys., 100:6 (2005), 1188
Kazakov, DI, “On the summation of divergent perturbation series in quantum mechanics and field theory”, Journal of Experimental and Theoretical Physics, 95:4 (2002), 581
I. M. Suslov, “Summing divergent perturbative series in a strong coupling limit. The Gell-Mann-Low function of the ϕ4 theory”, J. Exp. Theor. Phys., 93:1 (2001), 1
I. M. Suslov, “Gell-Mann-Low function in the ϕ4 theory”, Jetp Lett., 71:6 (2000), 217
Gino N.J. Añaños, N.F. Svaiter, “The tricritical phenomenon in the (λϑ4 + σϑ6)D=3 model”, Physica A: Statistical Mechanics and its Applications, 241:3-4 (1997), 627
A.L. Kataev, “Next-nexdt-to-leading perturbative QCD corrections; the current status of investigations”, Nuclear Physics B - Proceedings Supplements, 23:2 (1991), 72
Current Physics–Sources and Comments, 7, Large-Order Behaviour of Perturbation Theory, 1990, 27
A.L. Kataev, M.D. Vardiashvili, “Scheme dependence of the perturbative series for a physical quantity in the gϕ4-theory”, Physics Letters B, 221:3-4 (1989), 377
Yu. A. Kubyshin, “Sommerfeld–Watson summation of perturbation series”, Theoret. and Math. Phys., 58:1 (1984), 91–97