Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1978, Volume 36, Number 3, Pages 373–399 (Mi tmf3088)  

This article is cited in 21 scientific papers (total in 21 papers)

Partition function of the three-dimensional Ising model

I. R. Yukhnovskii
References:
Abstract: The method of collective variables is used to consider the partition function of the three-dimensisnal Ising model. A rigorous transition is made from the phase space of spin variables to the phase space of collective variables. It is shown that among the set of collective variables {ρk}N there is a variable ρ0 with respect to which there is a change in the form of the distribution function on the transition through the critical point. A basis distribution with respect to the collective variables describing events at the critical point is found. In the argument of the exponential, it contains the second and fourth powers of the collective variables. To within the basis distributions, the partition function of the system is integrated over layers of the phase space of the collective variables. Recursion relations are found. The critical point is determined. The method is compared with the ε-expansion method proposed by Wilson and Fisher. The integral form of the basis distribution is used to consider the problem of block structures of the system. Besides original results, the paper collects together the results obtained by the author, Yu. K. Rudavskii, and M. P. Kozlovskii published earlier in other journals.
Received: 07.02.1977
English version:
Theoretical and Mathematical Physics, 1978, Volume 36, Issue 3, Pages 798–815
DOI: https://doi.org/10.1007/BF01035756
Language: Russian
Citation: I. R. Yukhnovskii, “Partition function of the three-dimensional Ising model”, TMF, 36:3 (1978), 373–399; Theoret. and Math. Phys., 36:3 (1978), 798–815
Citation in format AMSBIB
\Bibitem{Yuk78}
\by I.~R.~Yukhnovskii
\paper Partition function of the three-dimensional Ising model
\jour TMF
\yr 1978
\vol 36
\issue 3
\pages 373--399
\mathnet{http://mi.mathnet.ru/tmf3088}
\transl
\jour Theoret. and Math. Phys.
\yr 1978
\vol 36
\issue 3
\pages 798--815
\crossref{https://doi.org/10.1007/BF01035756}
Linking options:
  • https://www.mathnet.ru/eng/tmf3088
  • https://www.mathnet.ru/eng/tmf/v36/i3/p373
    Erratum
    This publication is cited in the following 21 articles:
    1. I. R. Yukhnovskii, “Phase space of collective variables and the Zubarev transition function”, Theoret. and Math. Phys., 194:2 (2018), 189–219  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. George Bokun, Dung di Caprio, Myroslav Holovko, Vyacheslav Vikhrenko, “The system of mobile ions in lattice models: Screening effects, thermodynamic and electrophysical properties”, Journal of Molecular Liquids, 270 (2018), 183  crossref
    3. І.R. Yukhnovskii, M.P. Kozlovskii, І.V. Pilyuk, “Metod rozrakhunku vіlnoï energіï trivimіrnoï іzingopodіbnoï sistemi z vrakhuvannyam popravki na userednennya potentsіalu vzaєmodіï”, Ukr. J. Phys., 57:1 (2012), 80  crossref
    4. Kozlovskii, MP, “Microscopic description of the critical behavior of three-dimensional Ising-like systems in an external field”, Physical Review B, 73:17 (2006), 174406  crossref  isi
    5. Yukhnovskii, IR, “Study of the critical behaviour of three-dimensional Ising-like systems on the basis of the rho(6) model with allowance for microscopic parameters: I. High-temperature region”, Journal of Physics-Condensed Matter, 14:43 (2002), 10113  crossref  isi
    6. Yukhnovskii, IR, “Thermodynamics of three-dimensional Ising-like systems in the higher non-Gaussian approximation: Calculational method and dependence on microscopic parameters”, Physical Review B, 66:13 (2002), 134410  crossref  isi
    7. Z. E. Usatenko, M. P. Kozlovskii, “Thermodynamic characteristics of the classicaln-vector magnetic model in three dimensions”, Phys. Rev. B, 62:14 (2000), 9599  crossref
    8. Pylyuk, IV, “Description of critical behavior of Ising ferromagnet in the rho(6) model approximation taking into account confluent correction. I. Region above the phase transition point”, Low Temperature Physics, 25:11 (1999), 877  crossref  isi
    9. I. V. Pylyuk, “Critical behavior of the three-dimensional Ising sistem: Dependence of themodynamic characteristics on microscopic parameters”, Theoret. and Math. Phys., 117:3 (1998), 1459–1482  mathnet  crossref  crossref  zmath  isi
    10. M.P. Kozlovskii, I.V. Pylyuk, V.V. Dukhovii, “Equation of state of the 3D Ising model with an exponentially decreasing potential in the external field”, Journal of Magnetism and Magnetic Materials, 169:3 (1997), 335  crossref
    11. V. V. Dukhovyi, M. P. Kozlovskii, I. V. Pylyuk, “Equation of state in 3-D Ising model from microscopic level calculation”, Theoret. and Math. Phys., 107:2 (1996), 650–666  mathnet  crossref  crossref  zmath  isi
    12. M. P. Kozlovskii, I. V. Pylyuk, “Entropy and specific heat of the 3D ising model as functions of temperature and microscopic parameters of the system”, Physica Status Solidi (b), 183:1 (1994), 243  crossref
    13. M. P. Kozlovskii, I. V. Pylyuk, I. R. Yukhnovskii, “Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. I. The case $T>T_c$”, Theoret. and Math. Phys., 87:2 (1991), 540–556  mathnet  crossref  mathscinet  zmath  isi
    14. M. P. Kozlovskii, I. V. Pylyuk, I. R. Yukhnovskii, “Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. II. The case $T<T_c$”, Theoret. and Math. Phys., 87:3 (1991), 641–656  mathnet  crossref  mathscinet  zmath  isi
    15. M. P. Kozlovskii, “Nonasymptotic form of the recursion relations of the three-dimensional Ising model”, Theoret. and Math. Phys., 78:3 (1989), 300–308  mathnet  crossref  mathscinet  isi
    16. N.S. Gonchar, “Correlation functions of some continuous model systems and description of phase transitions”, Physics Reports, 172:5 (1989), 175  crossref
    17. Yu. V. Kozitskii, “Hierarchical vector model of a ferromagnet in the method of collective variables. The Lee–Yang theorem”, Theoret. and Math. Phys., 58:1 (1984), 63–71  mathnet  crossref  mathscinet  isi
    18. Yu. V. Kozitskii, I. R. Yukhnovskii, “Generalized hierarchical model of a scalar ferromagnet in the method of collective variables”, Theoret. and Math. Phys., 51:2 (1982), 490–497  mathnet  crossref  mathscinet  isi
    19. V. A. Onischuk, “Collective variables. Correlation functions on Gaussian functionals”, Theoret. and Math. Phys., 51:3 (1982), 582–593  mathnet  crossref  mathscinet  isi
    20. I. A. Vakarchuk, Yu. K. Rudavskii, I. R. Yukhnovskii, “Approximate renormalization group transformation in the theory of phase transitions. I. Differential equation of the renormalization group”, Theoret. and Math. Phys., 50:2 (1982), 204–209  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:643
    Full-text PDF :253
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025