Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1977, Volume 31, Number 3, Pages 392–404 (Mi tmf3038)  

This article is cited in 16 scientific papers (total in 16 papers)

Coherent potential method in the theory of disordered alloys

A. V. Vedyaev
References:
Abstract: Green's function of disordered alloy averaged over all configurations is written down in the form of infinite series, in which every next term includes one extra summation over the intermediate momenta. The first and second terms of the series correspond to the coherent potential approximation. It is shown that for the one band model the small parameter of the theory is (a/R0)3, where a is the lattice constant, R0 – the length of the electron hopping over the lattice. For the two bands sd-model the small parameter is γ/W, where γ is the constant of sd-hybridization, W – the width of the s-band. It is shown that the series for the Green function is convergent for all values of energy except those close to the edges of the bands. The effect of the shortest range order in the alloy on the energy spectrum, is estimated.
Received: 20.10.1976
English version:
Theoretical and Mathematical Physics, 1977, Volume 31, Issue 3, Pages 532–540
DOI: https://doi.org/10.1007/BF01030572
Language: Russian
Citation: A. V. Vedyaev, “Coherent potential method in the theory of disordered alloys”, TMF, 31:3 (1977), 392–404; Theoret. and Math. Phys., 31:3 (1977), 532–540
Citation in format AMSBIB
\Bibitem{Ved77}
\by A.~V.~Vedyaev
\paper Coherent potential method in the theory of disordered alloys
\jour TMF
\yr 1977
\vol 31
\issue 3
\pages 392--404
\mathnet{http://mi.mathnet.ru/tmf3038}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 31
\issue 3
\pages 532--540
\crossref{https://doi.org/10.1007/BF01030572}
Linking options:
  • https://www.mathnet.ru/eng/tmf3038
  • https://www.mathnet.ru/eng/tmf/v31/i3/p392
  • This publication is cited in the following 16 articles:
    1. S. P. Repets'kyy, V. S. Kharchenko, I. G. Vyshyvana, “Influence of an Anharmonicity and Electron–Phonon Interaction on a Frequency Spectrum of Crystals with the Hexagonal Close-Packed Lattice”, Usp. Fiz. Met., 12:4 (2011), 389  crossref
    2. Yu. A. Fridman, Ph. N. Klevets, A. P. Voytenko, “Cascade of phase transitions in the Fe1 - x Co x monolayer”, Phys. Solid State, 53:4 (2011), 745  crossref
    3. Yuriy Skrypnyk, “Criterion of applicability of coherent-potential approximation at low impurity concentrations”, Journal of Non-Crystalline Solids, 352:40-41 (2006), 4325  crossref
    4. M. I. Vasilevskiy, A. I. Belogorokhov, M. J. M. Gomes, “The effects of short-range order and natural microinhomogeneities on the FIR optical properties of CdxHg1-xTe”, Journal of Elec Materi, 28:6 (1999), 654  crossref
    5. N. P. Kulish, S. P. Repetskii, E. G. Len', T. S. Pastushenko, “Electron density of states and electrical conductivity of ordered alloys: Extension beyond the single-band approximation, taking into account scattering by clusters”, Phys. Solid State, 39:3 (1997), 347  crossref
    6. V. F. Los', A. V. Los', S. P. Repetsky, “Self-consistent cluster theory of the electron spectra of alloys”, Theoret. and Math. Phys., 97:2 (1993), 1312–1322  mathnet  crossref  mathscinet  isi
    7. M. P. Fateev, “Static conductivity of a binary alloy in the traveling-cluster approximation”, Theoret. and Math. Phys., 90:1 (1992), 85–90  mathnet  crossref  isi
    8. V. F. Los', S. P. Repetsky, “Theory of the conductivity of ordered alloys”, Theoret. and Math. Phys., 91:2 (1992), 522–531  mathnet  crossref  isi
    9. N. P. Kulish, P. V. Petrenko, S. P. Repetskii, T. D. Shatnii, “Coherent Potential Method in the Electronic Theory of Disordered Alloys”, Physica Status Solidi (b), 165:1 (1991), 143  crossref
    10. V. V. Garkusha, V. F. Los', S. P. Repetsky, “Extension of the single-atom approximation with allowance for short- and long-range order in alloys”, Theoret. and Math. Phys., 84:1 (1990), 737–744  mathnet  crossref  isi
    11. A. K. Arzhnikov, S. G. Novokshonov, “Cluster generalization of the coherent-potential approximation on the basis of the projection formalism in an augmented space”, Theoret. and Math. Phys., 84:1 (1990), 764–772  mathnet  crossref  isi
    12. A. K. Arzhnikov, A. V. Vedyaev, “Coherent potential method for a Heisenberg ferromagnet with nonmagnetic impurities”, Theoret. and Math. Phys., 77:3 (1988), 1309–1316  mathnet  crossref  isi
    13. I. V. Masanskii, V. I. Tokar', “Method of γ expansions in the electronic theory of disordered alloys”, Theoret. and Math. Phys., 76:1 (1988), 747–757  mathnet  crossref  mathscinet  isi
    14. M. SH. Erukhimov, S. G. Ovchinnikov, “Elementary excitations in anisotropic narrow-band magnetic semiconductors”, Theoret. and Math. Phys., 67:2 (1986), 473–482  mathnet  crossref  isi
    15. V. E. Egorushkin, A. I. Kul'ment'ev, “Electron structure of transition-metal alloys with arbitrary far order”, Soviet Physics Journal, 25:12 (1982), 1093  crossref
    16. Yu. M. Ivanchenko, A. A. Lisyanskii, “Coulomb correlations in disordered alloys”, Phys. Stat. Sol. (a), 67:1 (1981), 141  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:568
    Full-text PDF :298
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025