Abstract:
Starting from the group-theoretical considerations, all possible total sets of observables
on the sphere in the four-dimensional Euclidean space are found. It is shown
that there are six non-equivalent total sets of observables and the most general set is connected
with the elliptical coordinate system on the sphere.
Citation:
I. Lukach, “Complete sets of observables on the sphere in four-dimensional Euclidean space”, TMF, 31:2 (1977), 275–282; Theoret. and Math. Phys., 31:2 (1977), 457–461
\Bibitem{Luk77}
\by I.~Lukach
\paper Complete sets of observables on the sphere in four-dimensional Euclidean space
\jour TMF
\yr 1977
\vol 31
\issue 2
\pages 275--282
\mathnet{http://mi.mathnet.ru/tmf3011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=673017}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 31
\issue 2
\pages 457--461
\crossref{https://doi.org/10.1007/BF01036681}
Linking options:
https://www.mathnet.ru/eng/tmf3011
https://www.mathnet.ru/eng/tmf/v31/i2/p275
This publication is cited in the following 3 articles:
G. S. Pogosyan, A. Yakhno, “Separations of Variables and Analytic Contractions on Two-Dimensional Hyperboloids”, Phys. Part. Nuclei, 50:2 (2019), 87
C Grosche, Kh H Karayan, G S Pogosyan, A N Sissakian, “Quantum motion on the three-dimensional sphere: the ellipso-cylindrical bases”, J. Phys. A: Math. Gen., 30:5 (1997), 1629
I. V. Komarov, “Kowalewski basis for the hydrogen atom”, Theoret. and Math. Phys., 47:1 (1981), 320–324