Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1972, Volume 12, Number 2, Pages 264–282 (Mi tmf2992)  

This article is cited in 4 scientific papers (total in 4 papers)

Investigation of the electron-state densities in two-band super conductors with a nonmagnetic impurity

N. I. Botoshan, V. A. Moskalenko, A. M. Ursu
References:
Abstract: The electron-state densities nn(ω) and also the related functions ˉnn(ω), mn(ω), and ˉmn(ω) are calculated for a two-band superconductor with a nonmagnetic impurity in the limiting cases when the impurity has a low or a high concentration. The calculations are made for all frequencies in the range ωΩg, where Ωg is the single-particle spectrum energy gap of the two-band superconductor. It is shown that at low impurity concentrations n1 and n2 have sharp peaks near the corresponding energy gaps γ1 and γ2 of the pure two-band superconductor. Far from these values ω=γn a small impurity concentration hardly modifies the expressions for the densities given by the BCS-Bogolyubov theory for a pure two-band superconductor. If the nonmagnetic impurity has a high concentration, the functions nn, ˉnn, etc., of both bands differ little, and the state densities nn have a common maximum at the frequency Ωm=Γ1N1+Γ2N2N1+N2. The energy gap Ωg in this limiting case is somewhat less than Ωm. The densities nm(ω) obtained in the different frequency ranges are fitted at the boundaries of these ranges.
Received: 06.09.1971
English version:
Theoretical and Mathematical Physics, 1972, Volume 12, Issue 2, Pages 809–822
DOI: https://doi.org/10.1007/BF01035803
Language: Russian
Citation: N. I. Botoshan, V. A. Moskalenko, A. M. Ursu, “Investigation of the electron-state densities in two-band super conductors with a nonmagnetic impurity”, TMF, 12:2 (1972), 264–282; Theoret. and Math. Phys., 12:2 (1972), 809–822
Citation in format AMSBIB
\Bibitem{BotMosUrs72}
\by N.~I.~Botoshan, V.~A.~Moskalenko, A.~M.~Ursu
\paper Investigation of the electron-state densities in two-band super conductors with a nonmagnetic impurity
\jour TMF
\yr 1972
\vol 12
\issue 2
\pages 264--282
\mathnet{http://mi.mathnet.ru/tmf2992}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 12
\issue 2
\pages 809--822
\crossref{https://doi.org/10.1007/BF01035803}
Linking options:
  • https://www.mathnet.ru/eng/tmf2992
  • https://www.mathnet.ru/eng/tmf/v12/i2/p264
  • This publication is cited in the following 4 articles:
    1. M. I. Vladimir, V. A. Moskalenko, “Thermal conductivity of two-band superconductors”, Theoret. and Math. Phys., 23:1 (1975), 382–387  mathnet  crossref
    2. M. I. Vladimir, V. A. Moskalenko, “Spin splitting of the electron density of states in thin superconductors in a magnetic field”, Theoret. and Math. Phys., 25:2 (1975), 1085–1095  mathnet  crossref
    3. N. I. Botoshan, M. I. Vladimir, V. A. Moskalenko, “Densities of electron states of a two-band superconductor with paramagnetic impurity. Weak exchange scattering and strong interband scattering”, Theoret. and Math. Phys., 25:3 (1975), 1201–1209  mathnet  crossref
    4. N. I. Botoshan, M. I. Vladimir, V. A. Moskalenko, “Investigation of electron densities of states of superconducting transition metals with nonmagnetic impurity”, Theoret. and Math. Phys., 19:3 (1974), 579–592  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :90
    References:32
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025