Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 130, Number 1, Pages 64–86
DOI: https://doi.org/10.4213/tmf291
(Mi tmf291)
 

This article is cited in 15 scientific papers (total in 15 papers)

Formulation of Quantum Scattering Theory in Terms of Proper Differentials (Stationary Wave Packets)

V. I. Kukulin, O. A. Rubtsova

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
References:
Abstract: Constructing the basic operators of scattering theory on and off the mass shell in terms of spatially bounded stationary wave packets or proper differentials is described. For this, we use a technique based on a certain scheme for discretizing the continuum. Finite-dimensional approximations for the Green's functions and $T$-matrix, which are first found here, are immediately constructed for any energy using a single simple diagonalization of the Hamiltonian matrix in an $L_2$-type complete basis. We show that the developed approach leads to a convenient finite-dimensional representation of the scattering operators in the basis of the wave functions of a harmonic oscillator. The method allows an immediate extension to the problem of three and more bodies.
Received: 23.05.2001
English version:
Theoretical and Mathematical Physics, 2002, Volume 130, Issue 1, Pages 54–73
DOI: https://doi.org/10.1023/A:1013828431342
Bibliographic databases:
Language: Russian
Citation: V. I. Kukulin, O. A. Rubtsova, “Formulation of Quantum Scattering Theory in Terms of Proper Differentials (Stationary Wave Packets)”, TMF, 130:1 (2002), 64–86; Theoret. and Math. Phys., 130:1 (2002), 54–73
Citation in format AMSBIB
\Bibitem{KukRub02}
\by V.~I.~Kukulin, O.~A.~Rubtsova
\paper Formulation of Quantum Scattering Theory in Terms of Proper Differentials (Stationary Wave Packets)
\jour TMF
\yr 2002
\vol 130
\issue 1
\pages 64--86
\mathnet{http://mi.mathnet.ru/tmf291}
\crossref{https://doi.org/10.4213/tmf291}
\zmath{https://zbmath.org/?q=an:1044.81118}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 130
\issue 1
\pages 54--73
\crossref{https://doi.org/10.1023/A:1013828431342}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173912900005}
Linking options:
  • https://www.mathnet.ru/eng/tmf291
  • https://doi.org/10.4213/tmf291
  • https://www.mathnet.ru/eng/tmf/v130/i1/p64
  • This publication is cited in the following 15 articles:
    1. Abdurakhmanov I.B., Kadyrov A.S., Bray I., “Wave-packet continuum-discretization approach to ion-atom collisions: Nonrearrangement scattering”, Phys. Rev. A, 94:2 (2016), 022703  crossref  isi  elib  scopus
    2. O. A. Rubtsova, V. I. Kukulin, V. N. Pomerantsev, “Quantum scattering theory on the momentum lattice”, Phys. Part. Nuclei, 41:7 (2010), 1123  crossref
    3. Pomerantsev, VN, “Solving three-body scattering problems in the momentum lattice representation”, Physical Review C, 79:3 (2009), 034001  crossref  adsnasa  isi  elib  scopus  scopus
    4. Pupyshev, VV, “Generalizations of the Fock and Kato expansions to systems of three quantum particles”, Physics of Particles and Nuclei, 40:4 (2009), 391  crossref  adsnasa  isi  scopus  scopus
    5. JETP Letters, 90:5 (2009), 402–406  mathnet  crossref  isi  elib
    6. Rubtsova, OA, “Quantum scattering theory on the momentum lattice”, Physical Review C, 79:6 (2009), 064602  crossref  adsnasa  isi
    7. Rubtsova OA, Kukulin VI, Moro AM, “Continuum discretization methods in a composite particle scattering off a nucleus: Benchmark calculations”, Physical Review C, 78:3 (2008), 034603  crossref  adsnasa  isi  elib  scopus  scopus
    8. V. I. Kukulin, V. N. Pomerantsev, O. A. Rubtsova, “Wave-packet continuum discretization method for solving the three-body scattering problem”, Theoret. and Math. Phys., 150:3 (2007), 403–424  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Rubtsova OA, Kukulin VI, “Wave-packet discretization of a continuum: Path toward practically solving few-body scattering problems”, Physics of Atomic Nuclei, 70:12 (2007), 2025–2045  crossref  adsnasa  isi  scopus  scopus
    10. Kukulin VI, Rubtsova OA, “Elastic scattering on a nucleus and the breakup of the composite projectile via wave-packet continuum discretization”, Physical Review C, 76:4 (2007), 047601  crossref  adsnasa  isi  elib  scopus  scopus
    11. The Mathematica GuideBook for Symbolics, 2006, 978  crossref
    12. V. I. Kukulin, O. A. Rubtsova, “Solving the Charged-Particle Scattering Problem by Wave Packet Continuum Discretization”, Theoret. and Math. Phys., 145:3 (2005), 1711–1726  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. V. I. Kukulin, O. A. Rubtsova, “Finite-Dimensional Approximations for Scattering Theory Operators in the Wave-Packet Representation”, Theoret. and Math. Phys., 139:2 (2004), 693–705  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    14. V. I. Kukulin, O. A. Rubtsova, “Discrete Quantum Scattering Theory”, Theoret. and Math. Phys., 134:3 (2003), 404–426  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. Rubtsova O.A., Kukulin V.I., “Efficient technique for solving few-body scattering problems by the wave-packet continuum discretisation”, Few Body Problems in Physics '02, Few-Body Systems Supplementum, 14, 2003, 211–214  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:579
    Full-text PDF :265
    References:84
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025