Abstract:
Solution of the Cauchy problem for the right-invariant differential operator on
the Lie group is represented as a formal path integral. Finite-dimensional approximations
of this integral and its quasiclassical asymptotics are written down.
Citation:
M. V. Karasev, “Path integral and quasiclassical asymptotic behavior on a Lie group”, TMF, 31:1 (1977), 41–47; Theoret. and Math. Phys., 31:1 (1977), 305–309
\Bibitem{Kar77}
\by M.~V.~Karasev
\paper Path integral and quasiclassical asymptotic behavior on a~Lie group
\jour TMF
\yr 1977
\vol 31
\issue 1
\pages 41--47
\mathnet{http://mi.mathnet.ru/tmf2883}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=464944}
\zmath{https://zbmath.org/?q=an:0354.22012|0413.22006}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 31
\issue 1
\pages 305--309
\crossref{https://doi.org/10.1007/BF01041236}
Linking options:
https://www.mathnet.ru/eng/tmf2883
https://www.mathnet.ru/eng/tmf/v31/i1/p41
This publication is cited in the following 4 articles:
Yu. M. Vorob'ev, S. Yu. Dobrokhotov, V. P. Maslov, “Quasiclassical approximation for models of spin-spin interaction on a one-dimensional lattice”, J Math Sci, 31:6 (1985), 3297
Yu. M. Vorob'ev, S. Yu. Dobrokhotov, “Quasiclassical quantization of the periodic Toda chain from the point of view of Lie algebras”, Theoret. and Math. Phys., 54:3 (1983), 312–314
L. Yu. Motylev, “Transformation of the system of Maxwell equations in an inhomogeneous medium into an equation on the rotation group”, Theoret. and Math. Phys., 38:3 (1979), 241–245
V. P. Maslov, A. M. Chebotarev, “Jump-type processes and their applications in quantum mechanics”, J. Soviet Math., 13:3 (1980), 315–358