Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1972, Volume 11, Number 3, Pages 421–426 (Mi tmf2881)  

This article is cited in 10 scientific papers (total in 10 papers)

States associated with the two-dimensional Ising model

S. A. Pirogov
References:
Abstract: A study is made of states on the algebra of 0uasilocal observables generated by the transfer matrix of the two-dimensional Ising model and its highest eigenvecto r in the infinite-volume limit. Both states are quasifree and the latter (“ground state”) is pure. The limit transfer matrix $P_{\infty}$ is also calculated in the space of the representation associated with the ground state. All the calculations are made by the Onsager–Kaufman method.
Received: 07.09.1971
English version:
Theoretical and Mathematical Physics, 1972, Volume 11, Issue 3, Pages 614–617
DOI: https://doi.org/10.1007/BF01028379
Bibliographic databases:
Language: Russian
Citation: S. A. Pirogov, “States associated with the two-dimensional Ising model”, TMF, 11:3 (1972), 421–426; Theoret. and Math. Phys., 11:3 (1972), 614–617
Citation in format AMSBIB
\Bibitem{Pir72}
\by S.~A.~Pirogov
\paper States associated with the two-dimensional Ising model
\jour TMF
\yr 1972
\vol 11
\issue 3
\pages 421--426
\mathnet{http://mi.mathnet.ru/tmf2881}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=475445}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 11
\issue 3
\pages 614--617
\crossref{https://doi.org/10.1007/BF01028379}
Linking options:
  • https://www.mathnet.ru/eng/tmf2881
  • https://www.mathnet.ru/eng/tmf/v11/i3/p421
  • This publication is cited in the following 10 articles:
    1. David E. Evans, Yasuyuki Kawahigashi, Quantum and Non-Commutative Analysis, 1993, 341  crossref
    2. Alain Connes, David E. Evans, “Embeddings ofU(1)-current algebras in non-commutative algebras of classical statistical mechanics”, Commun.Math. Phys., 121:3 (1989), 507  crossref
    3. R. Kuik, “Markov and stability properties of equilibrium states for nearest-neighbor interactions”, Commun.Math. Phys., 115:4 (1988), 529  crossref
    4. D. E. Evans, J. T. Lewis, “On aC*-algebra approach to phase transition in the two-dimensional Ising model. II”, Commun.Math. Phys., 102:4 (1986), 521  crossref
    5. David E. Evans, Lecture Notes in Mathematics, 1136, Quantum Probability and Applications II, 1985, 162  crossref
    6. D. E. Evans, J. T. Lewis, “The spectrum of the transfer matrix in theC*-algebra of the Ising model at high temperatures”, Commun.Math. Phys., 92:3 (1984), 309  crossref
    7. Huzihiro Araki, David E. Evans, “On aC*-algebra approach to phase transition in the two-dimensional Ising model”, Commun.Math. Phys., 91:4 (1983), 489  crossref
    8. A. P. Bakalkin, Ya. Z. Shapiro, V. P. Rakina, A. N. Gaodu, “A review of the state standard for lightweight refractory products”, Refractories, 20:7-8 (1979), 506  crossref
    9. J. T. Lewis, P. N. M. Sisson, “AC*-algebra of the two-dimensional Ising model”, Commun.Math. Phys., 44:3 (1975), 279  crossref
    10. J.T. Lewis, P.N.M. Sisson, “A Fermi algebra for the Ising model on an infinite lattice”, Physics Letters A, 50:3 (1974), 197  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :111
    References:58
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025