Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1972, Volume 11, Number 2, Pages 236–247 (Mi tmf2855)  

This article is cited in 33 scientific papers (total in 33 papers)

Hydrodynamic Hamiltonian for a nonideal Bose gas

V. N. Popov
References:
Abstract: A functional integral method developed earlier is used to find the hydrodynamic Hamiltonian of a nonideal Bose gas and to construct a perturbation theory that is free of divergences at small energies and momenta. The kinetic equations at low temperatures are considered. The coefficient of first viscosity is calculated in quadratures.
Received: 17.06.1971
English version:
Theoretical and Mathematical Physics, 1972, Volume 11, Issue 2, Pages 478–486
DOI: https://doi.org/10.1007/BF01028563
Language: Russian
Citation: V. N. Popov, “Hydrodynamic Hamiltonian for a nonideal Bose gas”, TMF, 11:2 (1972), 236–247; Theoret. and Math. Phys., 11:2 (1972), 478–486
Citation in format AMSBIB
\Bibitem{Pop72}
\by V.~N.~Popov
\paper Hydrodynamic Hamiltonian for a nonideal Bose gas
\jour TMF
\yr 1972
\vol 11
\issue 2
\pages 236--247
\mathnet{http://mi.mathnet.ru/tmf2855}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 11
\issue 2
\pages 478--486
\crossref{https://doi.org/10.1007/BF01028563}
Linking options:
  • https://www.mathnet.ru/eng/tmf2855
  • https://www.mathnet.ru/eng/tmf/v11/i2/p236
  • This publication is cited in the following 33 articles:
    1. Luca Salasnich, “Electrodynamics of Superconductors: From Lorentz to Galilei at Zero Temperature”, Entropy, 26:1 (2024), 69  crossref
    2. Maksim Tomchenko, “Dispersion Law for a One-Dimensional Weakly Interacting Bose Gas with Zero Boundary Conditions”, J Low Temp Phys, 2024  crossref
    3. L Salasnich, M G Pelizzo, F Lorenzi, “Only-phase Popov action: thermodynamic derivation and superconducting electrodynamics”, J. Phys. A: Math. Theor., 57:35 (2024), 355302  crossref
    4. Seyed Mostafa Moniri, Heshmatollah Yavari, Elnaz Darsheshdar, “Three-body and Coulomb interactions in a quasi-two-dimensional dipolar Bose-condensed gas”, Annals of Physics, 438 (2022), 168788  crossref
    5. Takumi Yoshino, Shunsuke Furukawa, Masahito Ueda, “Intercomponent entanglement entropy and spectrum in binary Bose-Einstein condensates”, Phys. Rev. A, 103:4 (2021)  crossref
    6. Watabe Sh., “Strong Connection Between Single-Particle and Density Excitations in Bose-Einstein Condensates”, New J. Phys., 22:10 (2020), 103010  crossref  isi
    7. Watabe S., “Identities and Many-Body Approaches in Bose-Einstein Condensates”, Acta Phys. Pol. A, 135:6 (2019), 1222–1230  crossref  isi
    8. D. D. Solnyshkov, C. Leblanc, S. V. Koniakhin, O. Bleu, G. Malpuech, “Quantum analogue of a Kerr black hole and the Penrose effect in a Bose-Einstein condensate”, Phys. Rev. B, 99:21 (2019)  crossref
    9. K. A. Matveev, M. Pustilnik, “Viscous Dissipation in One-Dimensional Quantum Liquids”, Phys. Rev. Lett., 119:3 (2017)  crossref
    10. Ryan M. Wilson, Stefan Natu, “Beliaev damping in quasi-two-dimensional dipolar condensates”, Phys. Rev. A, 93:5 (2016)  crossref
    11. S. Mostafa Moniri, Heshmatollah Yavari, Elnaz Darsheshdar, “Effect of long-range 1/r interactions on the Landau damping in a Bose-Fermi mixture”, Eur. Phys. J. Plus, 131:4 (2016)  crossref
    12. S M Moniri, H Yavari, E Darsheshdar, “Landau damping in a dipolar Bose–Fermi mixture in the Bose–Einstein condensation (BEC) limit”, Chinese Phys. B, 25:12 (2016), 126701  crossref
    13. K. A. Matveev, M. Pustilnik, “Effective mass of elementary excitations in Galilean-invariant integrable models”, Phys. Rev. B, 94:11 (2016)  crossref
    14. J. H. Pixley, Xiaopeng Li, S. Das Sarma, “Damping of Long-Wavelength Collective Modes in Spinor Bose-Fermi Mixtures”, Phys. Rev. Lett., 114:22 (2015)  crossref
    15. Stoof H.T.C. van Heugten J. J. R. M., “Resummation of Infrared Divergencies in the Theory of Atomic Bose Gases”, J. Low Temp. Phys., 174:3-4 (2014), 159–183  crossref  isi
    16. Shohei Watabe, Yoji Ohashi, “Green's-function formalism for a condensed Bose gas consistent with infrared-divergent longitudinal susceptibility and Nepomnyashchii-Nepomnyashchii identity”, Phys. Rev. A, 90:1 (2014)  crossref
    17. J Saliba, P Lugan, V Savona, “Superfluid–insulator transition in weakly interacting disordered Bose gases: a kernel polynomial approach”, New J. Phys., 15:4 (2013), 045006  crossref
    18. Stefan S. Natu, S. Das Sarma, “Absence of damping of low-energy excitations in a quasi-two-dimensional dipolar Bose gas”, Phys. Rev. A, 88:3 (2013)  crossref
    19. Stefan S. Natu, Ryan M. Wilson, “Landau damping in a collisionless dipolar Bose gas”, Phys. Rev. A, 88:6 (2013)  crossref
    20. N. Dupuis, “Infrared behavior in systems with a broken continuous symmetry: Classical O(N) model versus interacting bosons”, Phys. Rev. E, 83:3 (2011)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:575
    Full-text PDF :226
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025