Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1977, Volume 30, Number 3, Pages 408–414 (Mi tmf2832)  

This article is cited in 24 scientific papers (total in 24 papers)

Asymptotic solution of stationary nonlinear Hartree equation

I. V. Simenog
References:
Abstract: Solution of nonlinear Hartree equation in the asymptotical limit of strong coupling is obtained for the case of attractive potentials of the Gaussian form. Absence of solutions of the Hartree equation with zero energy in three-dimensional space is demonstrated.
Received: 23.09.1976
English version:
Theoretical and Mathematical Physics, 1977, Volume 30, Issue 3, Pages 263–268
DOI: https://doi.org/10.1007/BF01036720
Bibliographic databases:
Language: Russian
Citation: I. V. Simenog, “Asymptotic solution of stationary nonlinear Hartree equation”, TMF, 30:3 (1977), 408–414; Theoret. and Math. Phys., 30:3 (1977), 263–268
Citation in format AMSBIB
\Bibitem{Sim77}
\by I.~V.~Simenog
\paper Asymptotic solution of stationary nonlinear Hartree equation
\jour TMF
\yr 1977
\vol 30
\issue 3
\pages 408--414
\mathnet{http://mi.mathnet.ru/tmf2832}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=479131}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 30
\issue 3
\pages 263--268
\crossref{https://doi.org/10.1007/BF01036720}
Linking options:
  • https://www.mathnet.ru/eng/tmf2832
  • https://www.mathnet.ru/eng/tmf/v30/i3/p408
  • This publication is cited in the following 24 articles:
    1. A. V. Pereskokov, “Asymptotics of hypergeometric coherent states and eigenfunctions of the hydrogen atom in a magnetic field. Determination of self-consistent energy levels”, Theoret. and Math. Phys., 222:3 (2025), 453–470  mathnet  crossref  crossref
    2. A. V. Pereskokov, “Asymptotics of the Spectrum of a Hartree Type Operator with Self-Consistent Potential Including the Macdonald Function”, J Math Sci, 279:4 (2024), 508  crossref
    3. A. V. Pereskokov, “Semiclassical Asymptotics of the Spectrum of a Two-Dimensional Hartree Type Operator Near Boundaries of Spectral Clusters”, J Math Sci, 264:5 (2022), 617  crossref
    4. A. V. Pereskokov, “Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 209:3 (2021), 1782–1797  mathnet  crossref  crossref  adsnasa  isi  elib
    5. Shapovalov A.V. Kulagin A.E. Trifonov A.Yu., “The Gross-Pitaevskii Equation With a Nonlocal Interaction in a Semiclassical Approximation on a Curve”, Symmetry-Basel, 12:2 (2020), 201  crossref  isi
    6. D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters”, Theoret. and Math. Phys., 199:3 (2019), 864–877  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. A. V. Pereskokov, “Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 187:1 (2016), 511–524  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. A. V. Pereskokov, “Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle”, Theoret. and Math. Phys., 183:1 (2015), 516–526  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. Kulagin A.E. Trifonov A.Yu. Shapovalov A.V., “Quasiparticles Described By the Gross–Pitaevskii Equation in the Semiclassical Approximation”, Russ. Phys. J., 58:5 (2015), 606–615  crossref  isi
    10. A. V. Pereskokov, “Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters”, Theoret. and Math. Phys., 178:1 (2014), 76–92  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Lipskaya A.V., Pereskokov A.V., “Asimptoticheskie resheniya odnomernogo uravneniya khartri s negladkim potentsialom vzaimodeistviya. asimptotika kvantovykh srednikh”, Vestnik moskovskogo energeticheskogo instituta, 2012, no. 6, 105–116 Asymptotic solution of the one-dimensional hartree equation with the non-smooth interaction potential. asymtotics of quantum averages  elib
    12. Ž. Pržulj, Z. Ivić, D. Kapor, J. Tekić, “Stationary soliton solutions for large adiabatic Holstein polaron in magnetic field in anisotropic solids”, Eur. Phys. J. B, 85:3 (2012)  crossref
    13. Belov V.V., Smirnova E.I., Trifonov A.Yu., “Semiclassical Spectral Series for the Two-Component Hartree-Type Equation”, Russian Physics Journal, 54:6 (2011), 639–648  crossref  isi
    14. Belov V.V., Smirnova E.I., Trifonov A.Yu., “Kvaziklassicheskie spektralnye serii dvukhkomponentnogo uravneniya tipa khartri”, Izvestiya vysshikh uchebnykh zavedenii. Fizika, 54:6 (2011), 21–29  elib
    15. Zoran Vosika, Željko Pržulj, Ljupčo Hadžievski, Zoran Ivić, “Properties of the moving Holstein large polaron in one-dimensional molecular crystals”, J. Phys.: Condens. Matter, 21:27 (2009), 275404  crossref
    16. V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system”, Theoret. and Math. Phys., 150:1 (2007), 21–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    17. Yu. Natanzon, L. S. Brizhik, A. A. Eremko, “Dynamics of a self‐trapped quasiparticle in a one‐dimensional molecular lattice with two phonon modes”, Physica Status Solidi (b), 244:2 (2007), 545  crossref
    18. Belov, VV, “Semiclassical spectrum for a Hartree-type equation corresponding to a rest point of the Hamilton-Ehrenfest system”, Journal of Physics A-Mathematical and General, 39:34 (2006), 10821  crossref  isi
    19. V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations”, Theoret. and Math. Phys., 130:3 (2002), 391–418  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    20. A. V. Pereskokov, “Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments”, Theoret. and Math. Phys., 131:3 (2002), 775–790  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :131
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025