Abstract:
The first three terms in the asymptotics of the solution of the Lieb–Lieniger equation
in the exact theory of one-dimensional Bose-gas with point interaction are founds
in the analytical form in the weak coupling limit. The asymptotical formulas for the
energy density, particle number density and pressure coincide with the corresponding
formulas obtained in the framework of perturbation theory in the hydrodynamical action
method, which is based on continual integral.
Citation:
V. N. Popov, “Theory of one-dimensional Bose gas with point interaction”, TMF, 30:3 (1977), 346–352; Theoret. and Math. Phys., 30:3 (1977), 222–226
\Bibitem{Pop77}
\by V.~N.~Popov
\paper Theory of one-dimensional Bose gas with point interaction
\jour TMF
\yr 1977
\vol 30
\issue 3
\pages 346--352
\mathnet{http://mi.mathnet.ru/tmf2805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=503307}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 30
\issue 3
\pages 222--226
\crossref{https://doi.org/10.1007/BF01036714}
Linking options:
https://www.mathnet.ru/eng/tmf2805
https://www.mathnet.ru/eng/tmf/v30/i3/p346
This publication is cited in the following 33 articles:
Andrew Urilyon, Stefano Scopa, Giuseppe Del Vecchio Del Vecchio, Jacopo De Nardis, “Quantum fluctuating theory for one-dimensional shock waves”, Phys. Rev. B, 111:4 (2025)
Aleksandra Petković, Zoran Ristivojevic, “Density of a one-dimensional weakly interacting Bose gas far from an impurity”, Phys. Rev. B, 108:17 (2023)
Isabelle Bouchoule, Jérôme Dubail, “Generalized hydrodynamics in the one-dimensional Bose gas: theory and experiments”, J. Stat. Mech., 2022:1 (2022), 014003
Leandro Farina, Guillaume Lang, P. A. Martin, “Love–Lieb Integral Equations: Applications, Theory, Approximations, and Computations”, SIAM Rev., 64:4 (2022), 831
Zoltán Bajnok, János Balog, Árpád Hegedűs, István Vona, “Running coupling and non-perturbative corrections for O(N) free energy and for disk capacitor”, J. High Energ. Phys., 2022:9 (2022)
Zoran Ristivojevic, “Dispersion relation of a polaron in the Yang-Gaudin Bose gas”, Phys. Rev. A, 105:1 (2022)
Zoran Ristivojevic, “Method of difference-differential equations for some Bethe-ansatz-solvable models”, Phys. Rev. A, 106:6 (2022)
Marcos Mariño, Tomás Reis, “A new renormalon in two dimensions”, J. High Energ. Phys., 2020:7 (2020)
Vladimir Kazakov, Evgeny Sobko, Konstantin Zarembo, “Double-Scaling Limit in the Principal Chiral Model: A New Noncritical String?”, Phys. Rev. Lett., 124:19 (2020)
Benjamin Reichert, Zoran Ristivojevic, “Analytical results for the capacitance of a circular plate capacitor”, Phys. Rev. Research, 2:1 (2020)
Marcos Mariño, Tomás Reis, “Renormalons in integrable field theories”, J high energy phys, 2020:4 (2020)
Benjamin Reichert, Aleksandra Petković, Zoran Ristivojevic, “Field-theoretical approach to the Casimir-like interaction in a one-dimensional Bose gas”, Phys. Rev. B, 99:20 (2019)
Volodymyr Pastukhov, “Ground-state properties of dilute one-dimensional Bose gas with three-body repulsion”, Physics Letters A, 383:9 (2019), 894
Benjamin Reichert, Aleksandra Petković, Zoran Ristivojevic, “Fluctuation-induced potential for an impurity in a semi-infinite one-dimensional Bose gas”, Phys. Rev. B, 100:23 (2019)
Benjamin Reichert, Grigori E. Astrakharchik, Aleksandra Petković, Zoran Ristivojevic, “Exact Results for the Boundary Energy of One-Dimensional Bosons”, Phys. Rev. Lett., 123:25 (2019)
Guillaume Lang, “Conjectures about the structure of strong- and weak-coupling expansions of a few ground-state observables in the Lieb-Liniger and Yang-Gaudin models”, SciPost Phys., 7:4 (2019)
Marcos Mariño, Tomás Reis, “Resurgence for superconductors”, J. Stat. Mech., 2019:12 (2019), 123102
Marcos Mariño, Tomás Reis, “Exact Perturbative Results for the Lieb–Liniger and Gaudin–Yang Models”, J Stat Phys, 177:6 (2019), 1148
Zoran Ristivojevic, “Conjectures about the ground-state energy of the Lieb-Liniger model at weak repulsion”, Phys. Rev. B, 100:8 (2019)
Aleksandra Petković, Zoran Ristivojevic, “Spectrum of Elementary Excitations in Galilean-Invariant Integrable Models”, Phys. Rev. Lett., 120:16 (2018)